Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
 in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
解题思路:
这道题的题意是从左上角到右下角走,一次只能走一步,且方向只能向下或向右。1是障碍物,不能行走。一共有多少种走法。
方法1:回溯法。代码如下。但是会产生超时问题。
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        if(m<=0){
            return 0;
        }
        int n = obstacleGrid[0].size();
        if(n<=0){
            return 0;
        }
        if(obstacleGrid[0][0]==1 || obstacleGrid[m-1][n-1]==1){
            return 0;
        }
        
        int result = 0;
        
        helper(obstacleGrid, 0, 0, m, n, result);
        
        return result;
    }
    
    void helper(vector<vector<int>>& obstacleGrid, int i, int j, int m, int n, int& result){
        if(obstacleGrid[i][j]==1){
            return;
        }
        if(i==m-1&&j==n-1){
            result++;
            return;
        }
        if(i<m-1){
            helper(obstacleGrid, i+1, j, m, n, result);
        }
        if(j<n-1){
            helper(obstacleGrid, i, j+1, m, n, result);
        }
    }
};方法2:动态规划法。设d[i][j]表示从0,0到i,j共有多少条路径。则有:
d[i][j]=0, 当matrix[i][j]=1;
d[i][j]=d[i-1][j] + d[i][j-1]; 其他。
注意边界条件的限制。
代码如下:
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        if(m<=0){
            return 0;
        }
        int n = obstacleGrid[0].size();
        if(n<=0){
            return 0;
        }
        if(obstacleGrid[0][0]==1 || obstacleGrid[m-1][n-1]==1){
            return 0;
        }
        vector<vector<int>> d(m, vector<int>(n, 0));
        d[0][0] = 1;
        for(int i=0; i<m; i++){
            for(int j=0; j<n; j++){
                if(obstacleGrid[i][j]==1){
                    d[i][j]=0;
                }else{
                    if(i>0){
                        d[i][j] += d[i-1][j];
                    }
                    if(j>0){
                        d[i][j] += d[i][j-1];
                    }
                }
            }
        }
        return d[m-1][n-1];
    }
};版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/kangrydotnet/article/details/47104365