标签:
题意:求最小的线段树的右端点(根节点表示区间[0,n]),使得给定的区间[L,R]是线段树的某个节点。
数据范围:L,R<=1e9,L/(R-L+1)<=2015
思路:首先从答案出发来判断是否出现给定区间是行不通的,于是只能从[L,R]出发来寻找答案。如果一个子节点表示区间[L,R],那么它的父节点可能是四种表示方式之一,分别是[L,2R-L],[L,2R-L+1],[2L-R-1,R],[2L-R-2,R],其中父节点为[L,2R-L]时要求R>L,否则它的右儿子就为空了,这是不允许的。接下来看无解的条件,如果L<(R-L+1)了,那么就是无解的,因为左儿子不可能比右儿子表示的区间长度小,也就是说L/(R-L+1)小于1时就可以判定为无解了。注意到由儿子节点到父亲节点,(R-L+1)变为了原来的两倍左右,而L是非增的,所以L/(R-L+1)每经过一层,值变为原来的1/2左右,有题目给定的数据,L/(R-L+1)<=2015,所以层数最多只有log22015=11,这不难想到dfs暴力扩展了,dfs总共只会扩展出4^11=4000000个节点,可以承受。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | /* ******************************************************************************** */ #include <iostream> // #include <cstdio> // #include <cmath> // #include <cstdlib> // #include <cstring> // #include <vector> // #include <ctime> // #include <deque> // #include <queue> // #include <algorithm> // using namespace std; // // #define pb push_back // #define mp make_pair // #define X first // #define Y second // #define all(a) (a).begin(), (a).end() // #define foreach(i, a) for (typeof(a.begin()) it = a.begin(); it != a.end(); it ++) // // void RI(vector< int >&a, int n){a.resize(n); for ( int i=0;i<n;i++) scanf ( "%d" ,&a[i]);} // void RI(){} void RI( int &X){ scanf ( "%d" ,&X);} template < typename ...R> // void RI( int &f,R&...r){RI(f);RI(r...);} void RI( int *p, int *q){ int d=p<q?1:-1; // while (p!=q){ scanf ( "%d" ,p);p+=d;}} void print(){cout<<endl;} template < typename T> // void print( const T t){cout<<t<<endl;} template < typename F, typename ...R> // void print( const F f, const R...r){cout<<f<< ", " ;print(r...);} template < typename T> // void print(T*p, T*q){ int d=p<q?1:-1; while (p!=q){cout<<*p<< ", " ;p+=d;}cout<<endl;} // // typedef pair< int , int > pii; // typedef long long ll; // typedef unsigned long long ull; // // /* -------------------------------------------------------------------------------- */ // template < typename T> bool umax(T &a, const T &b) { return a >= b? false : (a = b, true ); } ll ans, L, R; void dfs(ll L, ll R) { if (L == 0) { if (ans == -1 || ans > R) ans = R; return ; } ll s = L, t = R - L + 1; if (s < t) return ; if (L < R) dfs(L, 2 * R - L); dfs(L, 2 * R - L + 1); dfs(2 * L - R - 1, R); dfs(2 * L - R - 2, R); } int main() { #ifndef ONLINE_JUDGE freopen ( "in.txt" , "r" , stdin); #endif // ONLINE_JUDGE while (cin >> L >> R) { ans = -1; dfs(L, R); cout << ans << endl; } return 0; // } // // // // /* ******************************************************************************** */ |
标签:
原文地址:http://www.cnblogs.com/jklongint/p/4684221.html