【问题描述】
Given a set of distinct integers, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.The solution set must not contain duplicate subsets.For example,If nums = [1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
1.【基础知识】
1)图的深度遍历;
2)STL中vector排序。
2【屌丝源码】
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> mysubset;
if(nums.empty())
return mysubset;
int sublen(1),veclen(nums.size()),i;
while(sublen<=veclen) // 0.1 单独考虑
{
for(i=0;i<=veclen-sublen;i++)
{
int visited[256] = {0};
visited[i] = 1;
DFS(nums,i,sublen-1,visited,mysubset);// 0.1 单独考虑
}
sublen++;
}
}
void DFS(vector<int> nums,int top,int sublen,int* visited,vector<vector<int>> &mysubset)
// top:待添加元素的上一个元素索引。
// sublen:还需要添加的元素个数。
{
if(sublen==0)
{
vector<int> tmp_vec;
for(int i=0;i<256;i++)
if(visited[i] == 1)
tmp_vec.push_back(nums[i]);
mysubset.push_back(tmp_vec);
return ;
}
for(int j = top+1;j<sublen;j++)
{
visited[j] = 1;
DFS(nums,j,sublen-1,visited,mysubset);
}
}
};1)卡壳的地方
a.用while控制for循环数目,没能实现;b.用图的DFS,未能保证正确输出。
3.【源码AC】
// LeetCode, Subsets
// 增量构造法,深搜,时间复杂度 O(2^n),空间复杂度 O(n)
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end()); // 输出要求有序
vector<vector<int> > result;
vector<int> path;
subsets(S, path, 0, result);
return result;
}
private:
static void subsets(const vector<int> &S, vector<int> &path, int step,
vector<vector<int> > &result) {
if (step == S.size()) {
result.push_back(path);
return;
}
// 不选 S[step]
subsets(S, path, step + 1, result);
// 选 S[step]
path.push_back(S[step]);
subsets(S, path, step + 1, result);
path.pop_back();
}
};4.【复盘】
Really Really Manu !Awful frustrated Manu Rem !
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u013630349/article/details/47121697