码迷,mamicode.com
首页 > 其他好文 > 详细

poj 2986 A Triangle and a Circle

时间:2015-07-29 18:54:19      阅读:135      评论:0      收藏:0      [点我收藏+]

标签:

A Triangle and a Circle
Time Limit: 5000MS   Memory Limit: 131072K
Total Submissions: 3001   Accepted: 679   Special Judge

Description

Given one triangle and one circle in the plane. Your task is to calculate the common area of these two figures.

Input

The input will contain several test cases. Each line of input describes a test case. Each test case consists of nine floating point numbers, x1, y1, x2, y2, x3, y3, x4, y4 and r, where (x1, y1), (x2, y2) and (x3, y3) are the three vertices of the triangle and (x4, y4) is the center of the circle and r  is the radius. We guarantee the triangle and the circle are not degenerate.

Output

For each test case you should output one real number, which is the common area of the triangle and the circle, on a separate line. The result should be rounded to two decimal places.

Sample Input

0 20 10 0 -10 0 0 0 10

Sample Output

144.35
开始一直wa ,后来发现EPS弄得太小了(10 ^ -16 改成 10 ^ -8)
存一下模板
  1 #include<iostream>
  2 #include<cstdio>
  3 #include<cmath>
  4 #include<cstring>
  5 #include<vector>
  6 #include<algorithm>
  7 using namespace std;
  8 typedef long long LL;
  9 
 10 const double PI = acos(-1.0);
 11 const double EPS = 1e-8;
 12 
 13 inline int sgn(double x) {
 14     return (x > EPS) - (x < -EPS);
 15 }
 16 
 17 struct Point {
 18     double x, y;
 19     Point() {}
 20     Point(double x, double y): x(x), y(y) {}
 21     void read() {
 22         scanf("%lf%lf", &x, &y);
 23     }
 24     double angle() {
 25         return atan2(y, x);
 26     }
 27     Point operator + (const Point &rhs) const {
 28         return Point(x + rhs.x, y + rhs.y);
 29     }
 30     Point operator - (const Point &rhs) const {
 31         return Point(x - rhs.x, y - rhs.y);
 32     }
 33     Point operator * (double t) const {
 34         return Point(x * t, y * t);
 35     }
 36     Point operator / (double t) const {
 37         return Point(x / t, y / t);
 38     }
 39     double operator *(const Point &b)const
 40     {
 41         return x*b.x + y*b.y;
 42     }
 43     double length() const {
 44         return sqrt(x * x + y * y);
 45     }
 46     Point unit() const {            //单位向量
 47         double l = length();
 48         return Point(x / l, y / l);
 49     }
 50 };
 51 double cross(const Point &a, const Point &b) {
 52     return a.x * b.y - a.y * b.x;
 53 }
 54 double sqr(double x) {
 55     return x * x;
 56 }
 57 double dist(const Point &p1, const Point &p2) {
 58     return (p1 - p2).length();
 59 }
 60 double sdist(Point a,Point b){
 61     return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
 62 }
 63 //向量 op 逆时针旋转 angle
 64 Point rotate(const Point &p, double angle, const Point &o = Point(0, 0)) {
 65     Point t = p - o;
 66     double x = t.x * cos(angle) - t.y * sin(angle);
 67     double y = t.y * cos(angle) + t.x * sin(angle);
 68     return Point(x, y) + o;
 69 }
 70 Point line_inter(Point A,Point B,Point C,Point D){ //直线相交交点
 71         Point ans;
 72         double a1=A.y-B.y;
 73         double b1=B.x-A.x;
 74         double c1=A.x*B.y-B.x*A.y;
 75 
 76         double a2=C.y-D.y;
 77         double b2=D.x-C.x;
 78         double c2=C.x*D.y-D.x*C.y;
 79 
 80         ans.x=(b1*c2-b2*c1)/(a1*b2-a2*b1);
 81         ans.y=(a2*c1-a1*c2)/(a1*b2-a2*b1);
 82         return ans;
 83 }
 84 Point p_to_seg(Point p,Point a,Point b){        //点到线段的最近点
 85     Point tmp=p;
 86     tmp.x+=a.y-b.y;
 87     tmp.y+=b.x-a.x;
 88     if(cross(a-p,tmp-p)*cross(b-p,tmp-p)>0) return dist(p,a)<dist(p,b)?a:b;
 89     return line_inter(p,tmp,a,b);
 90 }
 91 void line_circle(Point c,double r,Point a,Point b,Point &p1,Point &p2){
 92     Point tmp=c;
 93     double t;
 94     tmp.x+=(a.y-b.y);//求垂直于ab的直线
 95     tmp.y+=(b.x-a.x);
 96     tmp=line_inter(tmp,c,a,b);
 97     t=sqrt(sqr(r)-sqr( dist(c,tmp)))/dist(a,b); //比例
 98     p1.x=tmp.x+(b.x-a.x)*t;
 99     p1.y=tmp.y+(b.y-a.y)*t;
100     p2.x=tmp.x-(b.x-a.x)*t;
101     p2.y=tmp.y-(b.y-a.y)*t;
102 }
103 struct Region {
104     double st, ed;
105     Region() {}
106     Region(double st, double ed): st(st), ed(ed) {}
107     bool operator < (const Region &rhs) const {
108         if(sgn(st - rhs.st)) return st < rhs.st;
109         return ed < rhs.ed;
110     }
111 };
112 struct Circle {
113     Point c;
114     double r;
115     vector<Region> reg;
116     Circle() {}
117     Circle(Point c, double r): c(c), r(r) {}
118     void read() {
119         c.read();
120         scanf("%lf", &r);
121     }
122     void add(const Region &r) {
123         reg.push_back(r);
124     }
125     bool contain(const Circle &cir) const {
126         return sgn(dist(cir.c, c) + cir.r - r) <= 0;
127     }
128     bool intersect(const Circle &cir) const {
129         return sgn(dist(cir.c, c) - cir.r - r) < 0;
130     }
131 };
132 void intersection(const Circle &cir1, const Circle &cir2, Point &p1, Point &p2) {   //两圆相交 交点
133     double l = dist(cir1.c, cir2.c);                            //两圆心的距离
134     double d = (sqr(l) - sqr(cir2.r) + sqr(cir1.r)) / (2 * l);  //cir1圆心到交点直线的距离
135     double d2 = sqrt(sqr(cir1.r) - sqr(d));                     //交点到 两圆心所在直线的距离
136     Point mid = cir1.c + (cir2.c - cir1.c).unit() * d;
137     Point v = rotate(cir2.c - cir1.c, PI / 2).unit() * d2;
138     p1 = mid + v, p2 = mid - v;
139 }
140 Point calc(const Circle &cir, double angle) {
141     Point p = Point(cir.c.x + cir.r, cir.c.y);
142     return rotate(p, angle, cir.c);
143 }
144 const int MAXN = 1010;
145 Circle cir[MAXN],cir2[MAXN];
146 bool del[MAXN];
147 int n;
148 double get_area(Circle* cir,int n) {            //多个圆的相交面积
149     double ans = 0;
150     memset(del,0,sizeof(del));
151     for(int i = 0; i < n; ++i) {
152         for(int j = 0; j < n; ++j) if(!del[j]) {                //删除被包含的圆
153             if(i == j) continue;
154             if(cir[j].contain(cir[i])) {
155                 del[i] = true;
156                 break;
157             }
158         }
159     }
160     for(int i = 0; i < n; ++i) if(!del[i]) {
161         Circle &mc = cir[i];
162         Point p1, p2;
163         bool flag = false;
164         for(int j = 0; j < n; ++j) if(!del[j]) {
165             if(i == j) continue;
166             if(!mc.intersect(cir[j])) continue;
167             flag = true;
168             intersection(mc, cir[j], p1, p2);                   //求出两圆的交点
169             double rs = (p2 - mc.c).angle(), rt = (p1 - mc.c).angle();
170             if(sgn(rs) < 0) rs += 2 * PI;
171             if(sgn(rt) < 0) rt += 2 * PI;
172             if(sgn(rs - rt) > 0) mc.add(Region(rs, PI * 2)), mc.add(Region(0, rt)); //添加相交区域
173             else mc.add(Region(rs, rt));
174         }
175         if(!flag) {
176             ans += PI * sqr(mc.r);
177             continue;
178         }
179         sort(mc.reg.begin(), mc.reg.end());                 //对相交区域进行排序
180         int cnt = 1;
181         for(int j = 1; j < int(mc.reg.size()); ++j) {
182             if(sgn(mc.reg[cnt - 1].ed - mc.reg[j].st) >= 0) {   //如果有区域可以合并,则合并
183                 mc.reg[cnt - 1].ed = max(mc.reg[cnt - 1].ed, mc.reg[j].ed);
184             } else mc.reg[cnt++] = mc.reg[j];
185         }
186         mc.add(Region());
187         mc.reg[cnt] = mc.reg[0];
188         for(int j = 0; j < cnt; ++j) {
189             p1 = calc(mc, mc.reg[j].ed);
190             p2 = calc(mc, mc.reg[j + 1].st);
191             ans += cross(p1, p2) / 2;                           //
192             double angle = mc.reg[j + 1].st - mc.reg[j].ed;
193             if(sgn(angle) < 0) angle += 2 * PI;
194             ans += 0.5 * sqr(mc.r) * (angle - sin(angle));      //弧所对应的的面积
195         }
196     }
197     return ans;
198 }
199 double two_cir(Circle t1,Circle t2){            //两个圆的相交面积
200     if(t1.contain(t2)||t2.contain(t1))    return PI * sqr(min(t2.r,t1.r));
201     if(!t1.intersect(t2)) return 0;
202     double ans=0,len=dist(t1.c,t2.c);
203     double x=(sqr(t1.r)+sqr(len)-sqr(t2.r))/(2*len);
204     double angle1=acos(x/t1.r),angle2=acos((len-x)/t2.r);
205     ans=sqr(t1.r)*angle1+sqr(t2.r)*angle2-len*t1.r*sin(angle1);    // 两个扇形 减去一个四边形面积
206     return ans;
207 }
208 double triangle_circle(Point a,Point b,Point o,double r){
209     double sign=1.0;
210     double ans=0;
211     Point p1,p2;
212     a=a-o;b=b-o;
213     o=Point(0,0);
214     if(sgn(cross(a,b))==0) return 0;
215     if(sdist(a,o)>sdist(b,o)){
216         swap(a,b);
217         sign=-1.0;
218     }
219     if(sdist(a,o)<r*r+EPS){  //a 在内, b 在外
220         if(sdist(b,o)<r*r+EPS) return cross(a,b)/2.0*sign;
221         line_circle(o,r,a,b,p1,p2);
222         if(dist(p1,b)>dist(p2,b)) swap(p1,p2);
223         double ans1=fabs(cross(a,p1));
224         double ans2=acos(p1*b/p1.length()/b.length())*r*r;
225         ans=(ans1+ans2)/2.0;
226         if(cross(a,b)<EPS&&sign>0.0||cross(a,b)>EPS&&sign<0.0) return -ans;
227         return ans;
228     }
229     Point tmp=p_to_seg(o,a,b);
230     if(sdist(o,tmp)>r*r-EPS){    //a,b所在直线与圆没有交点
231         ans=acos(a*b/a.length()/b.length())*r*r/2.0;
232         if(cross(a,b)<EPS&&sign>0.0||cross(a,b)>EPS&&sign<0.0) return -ans;
233         return ans;
234     }
235     line_circle(o,r,a,b,p1,p2);
236     double cm=r/(dist(a,o)-r);
237     Point m=Point((o.x+cm*a.x)/(1+cm),(o.y+cm*a.y)/(1+cm) );
238     double cn=r/(dist(o,b)-r);
239     Point n=Point( (o.x+cn*b.x)/(1+cn) , (o.y+cn*b.y)/(1+cn) );
240     double ans1 = acos( m*n/m.length()/n.length() )*r*r;
241     double ans2 = acos( p1*p2/p1.length()/p2.length() )*r*r-fabs(cross(p1,p2));
242     ans=(ans1-ans2)/2.0;
243     if(cross(a,b)<EPS&&sign>0.0||cross(a,b)>EPS&&sign<0.0) return -ans;
244     return ans;
245 }
246 int main() {
247     #ifndef ONLINE_JUDGE
248     freopen("input.txt","r",stdin);
249     #endif // ONLINE_JUDGE
250     Point a,b,c;
251     int cas=0;
252     Circle t1;
253     double d1,d2,d3,d4,d5,d6,d7,d8,d9;
254     while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf",&d1,&d2,&d3,&d4,&d5,&d6,&d7,&d8,&d9)!=EOF){
255         a.x=d1;a.y=d2;
256         b.x=d3;b.y=d4;
257         c.x=d5;c.y=d6;
258         t1.c.x=d7;t1.c.y=d8;t1.r=d9;
259         double ans=0;
260         ans+=triangle_circle(a,b,t1.c,t1.r);
261         ans+=triangle_circle(b,c,t1.c,t1.r);
262         ans+=triangle_circle(c,a,t1.c,t1.r);
263         printf("%.2f\n",fabs(ans)+EPS);
264     }
265 }

 

poj 2986 A Triangle and a Circle

标签:

原文地址:http://www.cnblogs.com/ainixu1314/p/4686858.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!