码迷,mamicode.com
首页 > 其他好文 > 详细

scikit-learn:3.4. Model persistence

时间:2015-07-30 09:33:44      阅读:211      评论:0      收藏:0      [点我收藏+]

标签:scikit-learn   机器学习   数据挖掘   model persistence   

参考:http://scikit-learn.org/stable/modules/model_persistence.html


训练了模型之后,我们希望可以保存下来,遇到新样本时直接使用已经训练好的保存了的模型,而不用重新再训练模型。本节介绍pickle在保存模型方面的应用。After training a scikit-learn model, it is desirable to have a way to persist the model for future use without having to retrain. The following section gives you an example of how to persist a model with pickle. We’ll also review a few security and maintainability issues when working with pickle serialization.)


1、persistence example

It is possible to save a model in the scikit by using Python’s built-in persistence model, namely pickle:

>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> iris = datasets.load_iris()
>>> X, y = iris.data, iris.target
>>> clf.fit(X, y)  
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
  kernel=‘rbf‘, max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)

>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.predict(X[0])
array([0])
>>> y[0]
0

有些情况下(more efficient on objects that carry large numpy arrays internally使用joblib’s 代替pickle (joblib.dump & joblib.load)。之后我们甚至可以在另一个pathon程序中load保存好的模型(pickle也可以。。。)

>>> from sklearn.externals import joblib
>>> <strong>joblib.dump(clf, 'filename.pkl') 
>>> clf = joblib.load('filename.pkl') </strong>

Note

 

joblib.dump returns a list of filenames. Each individual numpy array contained in the clf object is serialized as a separate file on the filesystem. All files are required in the same folder when reloading the model with joblib.load.



2、security & maintainability limitations

pickle (and joblib by extension)在maintainability and security方面有些问题,因为:

  • Never unpickle untrusted data
  • Models saved in one version of scikit-learn might not load in another version.
为了能够在scikit-learn未来的版本中重构已保存好的模型,需要pickled时添加一些metadata:

  • The training data, e.g. a reference to a immutable snapshot
  • The python source code used to generate the model
  • The versions of scikit-learn and its dependencies
  • The cross validation score obtained on the training data
further discussion,refer this talk by Alex Gaynor.



版权声明:本文为博主原创文章,未经博主允许不得转载。

scikit-learn:3.4. Model persistence

标签:scikit-learn   机器学习   数据挖掘   model persistence   

原文地址:http://blog.csdn.net/mmc2015/article/details/47143539

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!