标签:
#include<iostream> #include<cmath> #define N 2 // 非线性方程组中方程个数、未知量个数 #define Epsilon 0.0001 // 差向量1范数的上限 #define Max 100 //最大迭代次数 #define k1 -1.22785792e-001 #define k2 1.37477946e-002 using namespace std; const int N2=2*N; int X = 0; int Y = 1; int test(float x, float y); int main() { void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N] void ffjacobian(float xx[N],float yy[N][N]);//计算雅克比矩阵yy[N][N] void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量 x0 计算近似解向量 x1 float x0[N]={2.0,0.25}, y0[N], jacobian[N][N], invjacobian[N][N], x1[N], errornorm; int i,j,iter=0; //如果取消对x0的初始化,撤销下面两行的注释符, 就可以由键盘向x0读入初始近似解向量 //for( i=0;i<N;i++) // cin>>x0[i]; cout<<"初始近似解向量:"<<endl; for (i=0;i<N;i++) cout<<x0[i]<<" "; cout<<endl; cout<<endl; do { iter=iter+1; cout<<"第 "<<iter<<" 次迭代开始"<<endl; //计算向量函数的因变量向量 y0 ff(x0,y0); //计算雅克比矩阵 jacobian ffjacobian(x0,jacobian); //计算雅克比矩阵的逆矩阵 invjacobian inv_jacobian(jacobian,invjacobian); //由近似解向量 x0 计算近似解向量 x1 newdundiedai(x0, invjacobian,y0,x1); //计算差向量的1范数errornorm errornorm=0; for (i=0;i<N;i++) errornorm=errornorm+fabs(x1[i]-x0[i]); if (errornorm<Epsilon) break; for (i=0;i<N;i++) x0[i]=x1[i]; } while (iter<Max); test( x1[0], x1[1]); return 0; } void ff(float xx[N],float yy[N]) //调用函数 { float x,y; int i; x=xx[0]; y=xx[1]; float r = x * x + y * y; yy[0]=(1 + k1 * r + k2 * r * r) * x - X; yy[1]=(1 + k1 * r + k2 * r * r) * y - Y; //计算初值位置的值 cout<<"向量函数的因变量向量是: "<<endl; for( i=0;i<N;i++) cout<<yy[i]<<" "; cout<<endl; cout<<endl; } void ffjacobian(float xx[N],float yy[N][N]) { float x,y; int i,j; x=xx[0]; y=xx[1]; float r = x * x + y * y; //jacobian have n*n element //计算函数雅克比的值 yy[0][0]=1 + k1 * r + k2 * r * r + 2 * k1 * x * x + 4 * k2 * x * x * r ; yy[0][1]=2 * k1 * x * y + 4 * k2 * x * y * r; yy[1][0]=2 * k1 * x * y + 4 * k2 * x * y * r; yy[1][1]=1 + k1 * r + k2 * r * r + 2 * k1 * y * y + 4 * k2 * y * y * r; cout<<"雅克比矩阵是: "<<endl; for( i=0;i<N;i++) {for(j=0;j<N;j++) cout<<yy[i][j]<<" "; cout<<endl; } cout<<endl; } void inv_jacobian(float yy[N][N],float inv[N][N]) {float aug[N][N2],L; int i,j,k; cout<<"开始计算雅克比矩阵的逆矩阵 :"<<endl; for (i=0;i<N;i++) { for(j=0;j<N;j++) aug[i][j]=yy[i][j]; for(j=N;j<N2;j++) if(j==i+N) aug[i][j]=1; else aug[i][j]=0; } for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; } cout<<endl; for (i=0;i<N;i++) { for (k=i+1;k<N;k++) {L=-aug[k][i]/aug[i][i]; for(j=i;j<N2;j++) aug[k][j]=aug[k][j]+L*aug[i][j]; } } for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; } cout<<endl; for (i=N-1;i>0;i--) { for (k=i-1;k>=0;k--) {L=-aug[k][i]/aug[i][i]; for(j=N2-1;j>=0;j--) aug[k][j]=aug[k][j]+L*aug[i][j]; } } for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; } cout<<endl; for (i=N-1;i>=0;i--) for(j=N2-1;j>=0;j--) aug[i][j]=aug[i][j]/aug[i][i]; for (i=0;i<N;i++) { for(j=0;j<N2;j++) cout<<aug[i][j]<<" "; cout<<endl; for(j=N;j<N2;j++) inv[i][j-N]=aug[i][j]; } cout<<endl; cout<<"雅克比矩阵的逆矩阵: "<<endl; for (i=0;i<N;i++) { for(j=0;j<N;j++) cout<<inv[i][j]<<" "; cout<<endl; } cout<<endl; } void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]) { int i,j; float sum=0; for(i=0;i<N;i++) { sum=0; for(j=0;j<N;j++) sum=sum+inv[i][j]*y0[j]; x1[i]=x0[i]-sum; } cout<<"近似解向量:"<<endl; for (i=0;i<N;i++) cout<<x1[i]<<" "; cout<<endl;cout<<endl; } int test(float x, float y) { float ep = 0.01; float r = x * x + y * y; if ( ((1 + k1 * r + k2 * r * r) * x - X) < ep && ((1 + k1 * r + k2 * r * r) * y - Y)<ep) printf("ok!\n"); else printf("error!\n"); return 0; }
标签:
原文地址:http://www.cnblogs.com/tianpeng-blog/p/4689795.html