码迷,mamicode.com
首页 > 其他好文 > 详细

分治法理论

时间:2015-07-30 19:05:44      阅读:121      评论:0      收藏:0      [点我收藏+]

标签:

分治算法将一个大的问题分成多个小问题,每个小问题都是大问题的组成部分,然后用点额外的处理就能得到最终答案。例如,归并排序就是将原问题分成两个次级的问题,每个次级排序问题数据是上一级问题的一半,最后使用额外O(n)的工作量进行合并。时间复杂度表达式如下:

T(n) = 2T(n/2) + O(n)

下面的理论可用于计算分治算法的时间花费。对于一个给定程序(或算法),首先找到问题的重现关系(时间复杂度表达式的递归关系)。如果递归关系是下面这种形式,我们可以直接给出问题的答案(对应的分治算法时间复杂度),而不需要再去计算。

如果递归关系是这样的形式:T(n) = aT(n/b) + θ(n k log p n),(其中 a >= 1, b>1, k>=0, p 是实数)那么:

  1. if a > bk, then T(n) = θ(nlogba)
  2. if a=bk
    1. if p > -1, then T(n) = θ(nlogba logp+1n)
    2. if p = -1, then T(n) = θ(nlogba log(log n))
    3. if p < -1, then T(n) = θ(nlogba)
  3. if a < bk
    1. if p >=0, then T(n) = θ(nk logpn)
    2. if p <  0, then T(n) = O(nk)

分治法理论

标签:

原文地址:http://www.cnblogs.com/programnote/p/4689988.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!