码迷,mamicode.com
首页 > 其他好文 > 详细

[hdu4292]最大流,拆点

时间:2015-07-30 21:03:25      阅读:269      评论:0      收藏:0      [点我收藏+]

标签:

题意:给定每个人所喜欢的食物和饮料种类以及每种食物和饮料的数量,一个人需要一种食物和一种饮料(数量为1即可),问最多满足多少人的需要

 思路:由于食物和饮料对于人来说需要同时满足,它们是“与”的关系,所以建模时需要放在不同的层,另外如果把人放在根,食物和饮料依次放后面,则每个人会扩展出f*d个节点出来,边数有f*d条,而如果把人放中间,类似于“双向广搜”的原理,层数减半,边数大大减少。具体来说,从源点向每种食物连边,容量为其数量,如果某个人喜欢某种食物,则从食物向人连边,容量为1,为了限制人只能选择一个食物和饮料,需要人为地加n个新节点与每个人一一对应,从人向其所对应的新节点连一条容量为1的边,然后向喜欢的饮料各连一条容量为1的边,最后连回汇点,容量为饮料数量。图如下:

 技术分享

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* ******************************************************************************** */
#include <iostream>                                                                 //
#include <cstdio>                                                                   //
#include <cmath>                                                                    //
#include <cstdlib>                                                                  //
#include <cstring>                                                                  //
#include <vector>                                                                   //
#include <ctime>                                                                    //
#include <deque>                                                                    //
#include <queue>                                                                    //
#include <algorithm>                                                                //
#include <map>                                                                      //
using namespace std;                                                                //
                                                                                    //
#define pb push_back                                                                //
#define mp make_pair                                                                //
#define X first                                                                     //
#define Y second                                                                    //
#define all(a) (a).begin(), (a).end()                                               //
#define foreach(a, i) for (typeof(a.begin()) i = a.begin(); i != a.end(); ++ i)     //
#define fill(a, x) memset(a, x, sizeof(a))                                          //
                                                                                    //
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
                                                                                    //
typedef pair<intint> pii;                                                         //
typedef long long ll;                                                               //
typedef unsigned long long ull;                                                     //
                                                                                    //
template<typename T>bool umax(T&a, const T&b){return b>a?false:(a=b,true);}         //
template<typename T>bool umin(T&a, const T&b){return b<a?false:(a=b,true);}         //
template<typename T>                                                                //
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}            //
template<typename T>                                                                //
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}            //
                                                                                    //
/* -------------------------------------------------------------------------------- */
 
 
struct Dinic {
private:
    const static int maxn = 800 + 7;
    struct Edge {
        int from, to, cap;
        Edge(int u, int v, int w): from(u), to(v), cap(w) {}
    };
    int s, t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn], cur[maxn];
 
    bool bfs() {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = true;
        while (!Q.empty()) {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i ++) {
                Edge &e = edges[G[x][i]];
                if (!vis[e.to] && e.cap) {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int dfs(int x, int a) {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int &i = cur[x]; i < G[x].size(); i ++) {
            Edge &e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0) {
                e.cap -= f;
                edges[G[x][i] ^ 1].cap += f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
 
public:
    void clear() {
        for (int i = 0; i < maxn; i ++) G[i].clear();
        edges.clear();
        memset(d, 0, sizeof(d));
    }
    void add(int from, int to, int cap) {
        edges.push_back(Edge(from, to, cap));
        edges.push_back(Edge(to, from, 0));
        int m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }
 
    int solve(int s, int t) {
        this->s = s; this->t = t;
        int flow = 0;
        while (bfs()) {
            memset(cur, 0, sizeof(cur));
            flow += dfs(s, 1e9);
        }
        return flow;
    }
 
};
Dinic solver;
const int maxn = 207;
int cf[maxn], cd[maxn];
bool likef[maxn][maxn], liked[maxn][maxn];
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
#endif // ONLINE_JUDGE
    int n, f, d;
    while (cin >> n >> f >> d) {
        RI(cf + 1, cf + 1 + f);
        RI(cd + 1, cd + 1 + d);
        for (int i = 1; i <= n; i ++) {
            char s[234];
            scanf("%s", s);
            for (int j = 0; j < f; j ++) {
                likef[i][j + 1] = s[j] == ‘Y‘;
            }
        }
        for (int i = 1; i <= n; i ++) {
            char s[234];
            scanf("%s", s);
            for (int j = 0; j < d; j ++) {
                liked[i][j + 1] = s[j] == ‘Y‘;
            }
        }
        solver.clear();
        for (int i = 1; i <= f; i ++) {
            solver.add(0, i, cf[i]);
        }
        for (int i = 1; i <= n; i ++) {
            for (int j = 1; j <= f; j ++) {
                if (likef[i][j]) solver.add(j, f + i, 1);
            }
        }
        for (int i = 1; i <= n; i ++) {
            solver.add(f + i, f + n + i, 1);
        }
        for (int i = 1; i <= n; i ++) {
            for (int j = 1; j <= d; j ++) {
                if (liked[i][j]) solver.add(f + n + i, f + n + n + j, 1);
            }
        }
        for (int i = 1; i <= d; i ++) {
            solver.add(f + n + n + i, f + n + n + d + 1, cd[i]);
        }
        cout << solver.solve(0, f + n + n + d + 1) << endl;
    }
    return 0;                                                                       //
}                                                                                   //
                                                                                    //
                                                                                    //
                                                                                    //
/* ******************************************************************************** */

 

[hdu4292]最大流,拆点

标签:

原文地址:http://www.cnblogs.com/jklongint/p/4690411.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!