码迷,mamicode.com
首页 > 其他好文 > 详细

hdu 2767 Proving Equivalences

时间:2015-07-31 20:16:54      阅读:101      评论:0      收藏:0      [点我收藏+]

标签:

Proving Equivalences

Time Limit: 2000ms
Memory Limit: 32768KB
This problem will be judged on HDU. Original ID: 2767
64-bit integer IO format: %I64d      Java class name: Main
 
Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

1. A is invertible.
2. Ax = b has exactly one solution for every n × 1 matrix b.
3. Ax = b is consistent for every n × 1 matrix b.
4. Ax = 0 has only the trivial solution x = 0. 

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
 

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

* One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
* m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
 

Output

Per testcase:

* One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
 

Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2

Source

 
解题:强连通缩点。。。典型题
 
技术分享
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int maxn = 20010;
 4 vector<int>g[maxn];
 5 int dfn[maxn],low[maxn],id[maxn],od[maxn];
 6 int belong[maxn],scc,idx;
 7 bool instack[maxn];
 8 stack<int>stk;
 9 void init() {
10     for(int i = 0; i < maxn; ++i) {
11         dfn[i] = belong[i] = 0;
12         id[i] = od[i] = 0;
13         instack[i] = false;
14         g[i].clear();
15     }
16     scc = idx = 0;
17     while(!stk.empty()) stk.pop();
18 }
19 void tarjan(int u) {
20     dfn[u] = low[u] = ++idx;
21     instack[u] = true;
22     stk.push(u);
23     for(int i = g[u].size()-1; i >= 0; --i) {
24         if(!dfn[g[u][i]]) {
25             tarjan(g[u][i]);
26             low[u] = min(low[u],low[g[u][i]]);
27         } else if(instack[g[u][i]]) low[u] = min(low[u],dfn[g[u][i]]);
28     }
29     if(dfn[u] == low[u]) {
30         scc++;
31         int v;
32         do {
33             instack[v = stk.top()] = false;
34             stk.pop();
35             belong[v] = scc;
36         } while(v != u);
37     }
38 }
39 int main() {
40     int kase,n,m,u,v;
41     scanf("%d",&kase);
42     while(kase--) {
43         scanf("%d%d",&n,&m);
44         init();
45         for(int i = 0; i < m; ++i) {
46             scanf("%d%d",&u,&v);
47             g[u].push_back(v);
48         }
49         for(int i = 1; i <= n; ++i)
50             if(!dfn[i]) tarjan(i);
51         if(scc <= 1) {
52             puts("0");
53             continue;
54         }
55         for(int i = 1; i <= n; ++i)
56             for(int j = g[i].size()-1; j >= 0; --j)
57                 if(belong[i]!=belong[g[i][j]]) {
58                     id[belong[g[i][j]]]++;
59                     od[belong[i]]++;
60                 }
61         int a = 0,b = 0;
62         for(int i = 1; i <= scc; ++i) {
63             if(!id[i]) a++;
64             if(!od[i]) b++;
65         }
66         printf("%d\n",max(a,b));
67     }
68     return 0;
69 }
View Code

 

hdu 2767 Proving Equivalences

标签:

原文地址:http://www.cnblogs.com/crackpotisback/p/4693022.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!