标签:
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C abc" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q ab" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5 1 2 3 4 5 6 7 8 9 10 Q 4 4 Q 1 10 Q 2 4 C 3 6 3 Q 2 4
Sample Output
4 55 9 15
/* 线段树的区间更新 添加懒惰标记 */ #include <cstdio> #include <algorithm> using namespace std; const int MAX = 1000000; long long a[MAX]; long long lazy[MAX]; long long sum[MAX<<2]; void build(long long rt, long long l, long long r) { sum[rt] = lazy[rt] = 0; if(l == r){ sum[rt] = a[l]; return ; } long long mid = (l + r) /2 ; build(rt*2, l, mid); build(rt*2+1, mid+1, r); sum[rt] = sum[rt*2] + sum[rt*2+1]; } void down(long long rt, long long l, long long r) { if(lazy[rt]){ long long mid = (l + r) / 2; lazy[rt*2] += lazy[rt]; lazy[rt*2+1] += lazy[rt]; sum[rt*2] += lazy[rt]*(mid-l+1); sum[rt*2+1] += lazy[rt]*(r-mid); lazy[rt] = 0; } } void update(long long rt, long long l, long long r, long long L, long long R, long long y) { if(L <= l && R >= r){ lazy[rt] += y; sum[rt] += y*(r-l+1); return; } down(rt, l, r); long long mid = (l + r) /2 ; if(L <= mid) update(rt*2, l , mid, L, R, y); if(R > mid) update(rt*2+1, mid+1, r, L, R, y); sum[rt] = sum[rt*2] + sum[rt*2+1]; } long long query(long long rt, long long l, long long r, long long L, long long R) { if(L <= l && R >= r) return sum[rt]; down(rt, l, r); long long mid = (l + r) / 2; long long ret = 0; if(L <= mid) ret += query(rt*2, l , mid, L ,R); if(R > mid) ret += query(rt*2+1, mid+1, r, L, R); sum[rt] = sum[rt*2] + sum[rt*2+1]; return ret; } int main() { int n, q; long long x, y,z; char s[10]; while(~scanf("%d%d", &n, &q)){ for(int i = 1; i <= n ; i++) scanf("%I64d", &a[i]); build(1, 1, n); for(int i = 1; i <= q; i++){ scanf("%s", s); if(s[0] == ‘Q‘){ scanf("%I64d%I64d", &x, &y); printf("%I64d\n", query(1, 1, n, x, y)); } else{ scanf("%I64d%I64d%I64d", &x, &y, &z); update(1, 1, n, x, y, z); } } } return 0; }
POJ3468——线段树区间更新——A Simple Problem with Integers
标签:
原文地址:http://www.cnblogs.com/zero-begin/p/4694198.html