码迷,mamicode.com
首页 > 其他好文 > 详细

BestCoder Round #49

时间:2015-08-01 21:54:47      阅读:125      评论:0      收藏:0      [点我收藏+]

标签:

呵呵哒,1001的dfs返回值写错,wa了两发就没分了,1002显然是PAM可是我没学过啊!!!压位暴力可不可以。。。看看范围貌似不行,弃疗。。。1003根本不会做,1004想了想lcc发现不可做,那就是仙人掌分治,没写完囧。。。

最后Rating+69滚粗了。。。

官方题解:

1001 Untitled

对于一组可能的答案cc,如果先对一个觉小的c_ic?i??取模,再对一个较大的c_jc?j??取模,那么这个较大的c_jc?j??肯定是没有用的。因此最终的答案序列中的cc肯定是不增的。那么就枚举选哪些数字,并从大到小取模看看结果是否是00就可以了。时间复杂度O(2^n)O(2?n??).

1002 Three Palindromes

对原串前缀和后缀作一个01标记pre[i],suf[i]表示1-i和i-n能否能形成回文。记以i为中心的回文半径为r(i)。

这些都可以在O(N)时间内求出。也可以使用Hash+二分等方法O(NlogN)内求出。

我们考虑中间一个回文串的位置,不妨设它是奇数长度(偶数类似)。

那么问题变成了求一个i和d使得1<=d<=r(i)且pre[i-d]和suf[i+d]为真。

枚举i,实际上就是问pre[i-r(i)..i-1]和suf[i+1..i+r(i)]取反后 这两段有没有一个位置两者均为1,也就是and后不为0,暴力压位即可。

总时间复杂度为O(N^2/32)O(N?2??/32)。

1003 Gcd and Lcm

详见推导。

Ans=\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\sum_{l=1}^n [(i,j),(k,l)]Ans=?i=1?n???j=1?n???k=1?n???l=1?n??[(i,j),(k,l)] 不妨先考虑下式

r(n,d)=\sum_{i=1}^n\sum_{j=1}^n [(i,j)=d]r(n,d)=?i=1?n???j=1?n??[(i,j)=d]

令f(n)=r(n,1),则r(n,d)可以等价于f(n/d)。

f(n)=sum_{i=1}^{n}\sum_{j=1}^{n}f(n)=sum?i=1?n???j=1?n?? e[(i,j)] (e为单位函数) = sum_{d=1}^{n} u(d) [n/d]^{2}=sum?d=1?n??u(d)[n/d]?2??

令d1=(i,j),d2=(k,l)那么不难得出

Ans=\sum_{d1=1}^n\sum_{d2=1}^n [d1,d2] f(n/d1)f(n/d2)Ans=?d1=1?n???d2=1?n??[d1,d2]f(n/d1)f(n/d2)

令p=(d1,d2)则

\sum_{p=1}^n\sum_{d1=1}^{n/p}\sum_{d2=1}^{n/p} p*d1*d2*f(n/p/d1)*f(n/p/d2) e((d1,d2))?p=1?n???d1=1?n/p???d2=1?n/p??pd1d2f(n/p/d1)f(n/p/d2)e((d1,d2))

\sum_{p=1}^n\sum_{q=1}^{n/p}\sum_{d1=1}^{n/p/q}\sum_{d2=1}^{n/p/q} u(q)*p*q*q*d1*d2*f(n/q/d1)*f(n/q/d2)?p=1?n???q=1?n/p???d1=1?n/p/q???d2=1?n/p/q??u(q)pqqd1d2f(n/q/d1)f(n/q/d2)

T=p*qT=pq

g(n)=\sum_{d=1}^{n} u(d) f(n/d)^2g(n)=?d=1?n??u(d)f(n/d)?2??

s(n)=\sum_{d|n} u(d)*d^2*(n/d)s(n)=?dn??u(d)d?2??(n/d)

则化简得Ans=\sum_{T=1}^n s(T)*g(n/T)Ans=?T=1?n??s(T)g(n/T)

s为积性函数,可以O(N)时间内预处理出1-N的所有函数值。 可惜的是g并非积性函数,但我们亦可以在O(sqrt(N))的时间求出g(N)。 在最后的答案中我们对g(n/T)的每种取值均算一遍即可,注意多组数据时记忆化。

1004 Dynamic Cactus

考虑离线,并对仙人掌进行分治。

类似于树的点分,每次的分治中心无非是两种情况:节点或者环。

这样每次新建节点时就去更新过分治中心的答案。

为了保证更新答案的两个点分属不同子树:

对于普通节点,只要维护最大和在另一子树的次大距离即可;对于环,由于环上的距离计算存在序的问题以及两种走法,我们可以在环上任选一个开始位置,需要分前后两部分更新和询问,可以用四个BIT维护前缀后缀和正负符号。

总时间复杂度为O(NlogNlogN)O(NlogNlogN)。

 

 

1001:

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<algorithm>
 5 #include<queue>
 6 #include<cstring>
 7 #define PAU putchar(‘ ‘)
 8 #define ENT putchar(‘\n‘)
 9 using namespace std;
10 const int maxn=20+5,inf=1e9;
11 inline int read(){
12     int x=0,sig=1;char ch=getchar();
13     while(!isdigit(ch)){if(ch==-)sig=-1;ch=getchar();}
14     while(isdigit(ch))x=10*x+ch-0,ch=getchar();
15     return x*=sig;
16 }
17 inline void write(int x){
18     if(x==0){putchar(0);return;}if(x<0)putchar(-),x=-x;
19     int len=0,buf[15];while(x)buf[len++]=x%10,x/=10;
20     for(int i=len-1;i>=0;i--)putchar(buf[i]+0);return;
21 }
22 int A[maxn],T,n,p[maxn],num;
23 int dfs(int now,int l,int tot){
24     if(l>n)return inf;
25     if(now%p[l]==0)return tot;
26     return min(dfs(now%p[l],l+1,tot+1),dfs(now,l+1,tot));
27 }
28 void init(){
29     T=read();
30     while(T--){
31         n=read();num=read();
32         for(int i=1;i<=n;i++)A[i]=read();
33         if(num==0){puts("0");continue;}
34         sort(A+1,A+1+n);
35         for(int i=1;i<=n;i++)p[i]=A[n-i+1];
36         //for(int i=1;i<=n;i++)write(p[i]),PAU;
37         int tmp=dfs(num,1,1);
38         if(tmp!=inf)write(tmp),ENT;
39         else puts("-1");
40         //write(dfs(num,1));ENT;
41     }
42     
43     return;
44 }
45 void work(){
46     return;
47 }
48 void print(){
49     return;
50 }
51 int main(){init();work();print();return 0;}

 

BestCoder Round #49

标签:

原文地址:http://www.cnblogs.com/chxer/p/4694684.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!