标签:the kings problem hdu 3861 强连通缩点 最小路径覆盖
1 3 2 1 2 1 3
2
题意:n个城市m条有向边,把这些城市分成若干个州,分的原则是(1)u和v可以互相到达的话他们两个必须在同一个州(2)同一个州里任意两个城市u和v要满足u可以到达v或者v可以到达u。问州的最小个数是多少。
思路:先用Tarjan算法进行缩点,在缩点后的图上进行二分图匹配,最后求得最小路径覆盖=强连通个数-最大匹配数。
可以看一下:
http://blog.csdn.net/hellobabygogo3/article/details/7900812
http://www.cnblogs.com/ka200812/archive/2011/07/31/2122641.html
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std;
#define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 1005;
const int MAXN = 5005;
const int MAXM = 100010;
int n,m;
struct Edge
{
int to,next;
}edge[MAXM],e[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Belong[MAXN],Stack[MAXN];
int Index,scc,top;
bool Inq[MAXN];
int uN,vN;
int linker[MAXN];
bool used[MAXN];
int hed[MAXN],num;
void init()
{
tot=0;num=0;
memset(hed,-1,sizeof(hed));
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
e[num].to=v;
e[num].next=hed[u];
hed[u]=num++;
}
void addedge(int u,int v)
{
edge[tot].to=v;
edge[tot].next=head[u];
head[u]=tot++;
}
void Tarjan(int u)
{
int v;
Low[u]=DFN[u]=++Index;
Stack[top++]=u;
Inq[u]=true;
for (int i=head[u];i+1;i=edge[i].next)
{
v=edge[i].to;
if (!DFN[v])
{
Tarjan(v);
if (Low[u]>Low[v]) Low[u]=Low[v];
}
else if (Inq[v]&&Low[u]>DFN[v])
Low[u]=DFN[v];
}
if (Low[u]==DFN[u])
{
scc++;
do{
v=Stack[--top];
Inq[v]=false;
Belong[v]=scc;
}while (v!=u);
}
}
void solve(int N)
{
memset(DFN,0,sizeof(DFN));
memset(Inq,false,sizeof(Inq));
Index=scc=top=0;
for (int i=1;i<=N;i++)
if (!DFN[i])
Tarjan(i);
for (int u=1;u<=N;u++)
{
for (int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].to;
if (Belong[u]==Belong[v]) continue;
add(Belong[u],Belong[v]);
}
}
uN=vN=scc;
}
bool dfs(int u)
{
for (int i=hed[u];~i;i=e[i].next)
{
int v=e[i].to;
if (!used[v])
{
used[v]=true;
if (linker[v]==-1||dfs(linker[v]))
{
linker[v]=u;
return true;
}
}
}
return false;
}
int hungary()
{
int ans=0;
memset(linker,-1,sizeof(linker));
for (int i=1;i<=uN;i++)
{
memset(used,false,sizeof(used));
if (dfs(i)) ans++;
if (ans==uN) break;
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j,t,u,v;
sf(t);
while (t--)
{
sff(n,m);
init();
for (i=0;i<m;i++)
{
sff(u,v);
addedge(u,v);
}
solve(n);
int ans=hungary();
printf("scc=%d \n",scc);
printf("%d\n",scc-ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
The King’s Problem (hdu 3861 强连通缩点+最小路径覆盖)
标签:the kings problem hdu 3861 强连通缩点 最小路径覆盖
原文地址:http://blog.csdn.net/u014422052/article/details/47205335