标签:
并查集
//http://blog.csdn.net/dellaserss/article/details/7724401
首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如:
1、随意给你两个 点,让你判断它们是否连通;
2、问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块;
3、像畅通工程这题,问还需要修几条路,实质就是求有几个连 通分支。如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;
并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。
int pre[1000 ]; int find(int x) //查找根节点 { int r=x; while ( pre[r ] != r ) //返回根节点 r r=pre[r ]; int i=x , j ; while( i != r ) //路径压缩 { j = pre[ i ]; // 在改变上级之前用临时变量 j 记录下他的值 pre[ i ]= r ; //把上级改为根节点 i=j; } return r ; } void join(int x,int y) //判断x y是否连通 { int fx = find(x); int fy = find(y); if(fx!=fy) //如果已经连通,就不用管了; 如果不连通,就把它们所在的连通分支合并起 pre[fx ]=fy; }
递归法:
int father[MAX]; /* father[x]表示x的父节点*/ int rank[MAX]; /* rank[x]表示x的秩*/ /* 初始化集合*/ void Make_Set(int x) { father[x] = x; //根据实际情况指定的父节点可变化 rank[x] = 0; //根据实际情况初始化秩也有所变化 } /* 查找x元素所在的集合,回溯时压缩路径*/ int Find_Set(int x) { if (x != father[x]) { father[x] = Find_Set(father[x]); //这个回溯时的压缩路径是精华 } return father[x]; } /* 按秩合并x,y所在的集合 下面的那个if else结构不是绝对的,具体根据情况变化 但是,宗旨是不变的即,按秩合并,实时更新秩。 */ void Union(int x, int y) { x = Find_Set(x); y = Find_Set(y); if (x == y) return; if (rank[x] > rank[y]) { father[y] = x; } else { if (rank[x] == rank[y]) { rank[y]++; } father[x] = y; } }
例子代码(http://acm.hdu.edu.cn/showproblem.php?pid=1232):
#include<iostream> using namespace std; int pre[1050]; bool t[1050]; //t 用于标记独立块的根结点 int Find(int x) { int r=x; while(r!=pre[r]) r=pre[r]; int i=x,j; while(pre[i]!=r) { j=pre[i]; pre[i]=r; i=j; } return r; } void mix(int x,int y) { int fx=Find(x),fy=Find(y); if(fx!=fy) { pre[fy]=fx; } } int main() { int N,M,a,b,i,j,ans; while(scanf("%d%d",&N,&M)&&N) { for(i=1;i<=N;i++) //初始化 pre[i]=i; for(i=1;i<=M;i++) //吸收并整理数据 { scanf("%d%d",&a,&b); mix(a,b); } memset(t,0,sizeof(t)); for(i=1;i<=N;i++) //标记根结点 { t[Find(i)]=1; } for(ans=0,i=1;i<=N;i++) if(t[i]) ans++; printf("%d\n",ans-1); } return 0; }//dellaserss
标签:
原文地址:http://www.cnblogs.com/jeakeven/p/4696815.html