标签:
3 3 2 1 2 1 3 2 3 1 2 1 3
2 1
给定n个点m条边的无向图(有自环有重边) q个询问
对于某个询问 query : [l,r]
把所有的边 形如 {u,v} u,v其中一个或者两个都不在区间[l,r]上的 都删除,求此时残余图的连通分量数。
每个询问都是互相独立的,也就是每个询问都是从原图删除而来。
思路:
感觉很有道理的样子,写了一发,卡常数卡死人了。。
#pragma comment(linker, "/STACK:1024000000") #include <iostream> #include <fstream> #include <string> #include <time.h> #include <vector> #include <map> #include <queue> #include <algorithm> #include <stack> #include <cstring> #include <cmath> #include <set> #include <vector> using namespace std; template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) pt(x / 10); putchar(x % 10 + '0'); } typedef long long ll; typedef pair<int, int> pii; const int N = 1e5 + 100; const int inf = 10000000; struct BIT { int c[N], maxn; void init(int n) { maxn = n; memset(c, 0, (10 + n) *sizeof(int)); } int lowbit(int x) { return x&-x; } int sum(int x) { int ans = 0; while (x)ans += c[x], x -= lowbit(x); return ans; } int query(int l, int r) { return sum(r) - sum(l - 1); } void change(int x, int val) { while (x<=maxn)c[x] += val, x += lowbit(x); } }bit; struct Node *null; struct Node { Node *fa, *ch[2]; int val; int mi, min_id, id; bool rev; inline void put() { printf("%d: fa:%d [%d,%d] val:%d ma:%d,%d rev:%d\n", id, fa->id, ch[0]->id, ch[1]->id, val, mi, min_id, rev); } inline void clear(int _id) { fa = ch[0] = ch[1] = null; rev = 0; id = _id; mi = inf; min_id = 0; val = 0; } inline void push_up() { if (this == null)return; if (val) { mi = min(id, min(ch[0]->mi, ch[1]->mi)); if (id <= min(ch[0]->mi, ch[1]->mi)) min_id = id; else if (ch[0]->mi < min(ch[1]->mi, id ))min_id = ch[0]->min_id; else min_id = ch[1]->min_id; } else { mi = min(ch[0]->mi, ch[1]->mi); if (ch[0]->mi < ch[1]->mi)min_id = ch[0]->min_id; else min_id = ch[1]->min_id; } } inline void push_down() { if (this == null)return; if (rev) { ch[0]->flip(); ch[1]->flip(); rev = 0; } } inline void setc(Node *p, int d) { ch[d] = p; p->fa = this; } inline bool d() { return fa->ch[1] == this; } inline bool isroot() { return fa == null || fa->ch[0] != this && fa->ch[1] != this; } inline void flip() { if (this == null)return; swap(ch[0], ch[1]); rev ^= 1; } inline void go() {//从链头开始更新到this if (!isroot())fa->go(); push_down(); } inline void rot() { Node *f = fa, *ff = fa->fa; int c = d(), cc = fa->d(); f->setc(ch[!c], c); this->setc(f, !c); if (ff->ch[cc] == f)ff->setc(this, cc); else this->fa = ff; f->push_up(); } inline Node*splay() { go(); while (!isroot()) { if (!fa->isroot()) d() == fa->d() ? fa->rot() : rot(); rot(); } push_up(); return this; } inline Node* access() {//access后this就是到根的一条splay,并且this已经是这个splay的根了 for (Node *p = this, *q = null; p != null; q = p, p = p->fa) { p->splay()->setc(q, 1); p->push_up(); } return splay(); } inline Node* find_root() { Node *x; for (x = access(); x->push_down(), x->ch[0] != null; x = x->ch[0]); return x; } void make_root() { access()->flip(); } void cut() {//把这个点的子树脱离出去 access(); ch[0]->fa = null; ch[0] = null; push_up(); } void cut(Node *x) { if (this == x || find_root() != x->find_root())return; else { x->make_root(); cut(); } } void link(Node *x) { if (find_root() == x->find_root())return; else { make_root(); fa = x; } } }; Node pool[N], *tail; Node *node[N]; void init(int n) { tail = pool; null = tail++; null->clear(0); for (int i = 1; i <= n; i++) { node[i] = tail++; node[i]->clear(i); } } void debug(Node *x) { if (x == null)return; x->put(); debug(x->ch[0]); debug(x->ch[1]); } int n, m, q; struct BST { int f[N]; void init(int n) { for (int i = 1; i <= n; i++)f[i] = i; } int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); } void Union(int u, int v) { u = find(u); v = find(v); if (u == v)return; if (u > v)swap(u, v); f[u] = v; } }cha; void insert(int x, int y) { // puts("**==="); for (int i = 1; i <= max(x, y); i++)debug(node[i]), puts("");puts(""); if (cha.find(x) == cha.find(y)) { node[y]->access(); // puts("**"); for (int i = 1; i <= max(x, y); i++)debug(node[i]), puts("");puts(""); int id = node[y]->min_id; if (y <= id)return; // printf("change id:%d\n", id); bit.change(id, -1); node[id]->val--; node[id]->cut(node[x]); } else cha.Union(x, y); // puts("---------");for (int i = 1; i <= x; i++)debug(node[i]), puts("");puts(""); bit.change(y, 1); node[y]->make_root(); node[y]->val++; node[y]->push_up(); node[y]->fa = node[x]; // puts("@@@@@@");for (int i = 1; i <= x; i++)debug(node[i]), puts("");puts(""); } int ans[N]; struct { struct Edge { int to, nex, id; }edge[N << 1]; int head[N], edgenum; void init(int n) { memset(head, -1, (10 + n) *sizeof(int)); edgenum = 0; } void add(int u, int v, int id = 0) { Edge E = { v, head[u], id}; edge[edgenum] = E; head[u] = edgenum++; } }E, Q; int main() { while (~scanf("%d%d%d", &n,&m,&q)) { E.init(n); Q.init(n); cha.init(n); for (int i = 0, u, v;i < m; i++) { rd(u), rd(v); if (u == v) {i--, m--;continue;} if (u < v)E.add(v, u);else E.add(u, v); } for (int i = 0, u, v;i < q; i++) { rd(u); rd(v); Q.add(v, u, i); } bit.init(n); init(n); for (int i = 1; i <= n; i++) { for (int j = E.head[i]; ~j; j = E.edge[j].nex) insert(i, E.edge[j].to); for (int j = Q.head[i]; ~j; j = Q.edge[j].nex) ans[Q.edge[j].id] = n - bit.query(Q.edge[j].to, i); } for (int i = 0; i < q; i++) pt(ans[i]), puts(""); } return 0; } /* 7 9 1 1 2 1 3 1 5 1 6 4 7 4 6 2 7 6 2 4 3 2 7 ans:3 */
版权声明:本文为博主原创文章,未经博主允许不得转载。
HDU 5333 Undirected Graph LCT+BIT
标签:
原文地址:http://blog.csdn.net/qq574857122/article/details/47214353