标签:
题意:小明有2个账号,rating都是0分,每打一场赢的概率为P,假设当前分为x,赢了分数变为min(1000,x+50),输了则分数变为max(0,x-100),小明每次都选rating小的账号打,求打到有一个账号为1000所需的场数的期望值
思路:很明显需要把分数离散化,50分为1个单位。利用期望的可加性建立状态:dp(x,y)(x<=y))表示当前两个账号rating小的为x,大的为y,到达目标状态所需场数的期望值,则有dp(x,y)=P*dp(x+1,y)+(1-P)*dp(x-1,y){这里为了描述方便,没有考虑边界},dp(19,20)=0。建好图后由于所有的dp值都是未知的,但转移时的每一项前面的系数为常数,所以可以考虑用高斯消元来确定每个状态的值。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | /* ******************************************************************************** */ #include <iostream> // #include <cstdio> // #include <cmath> // #include <cstdlib> // #include <cstring> // #include <vector> // #include <ctime> // #include <deque> // #include <queue> // #include <algorithm> // #include <map> // #include <cmath> // using namespace std; // // #define pb push_back // #define mp make_pair // #define X first // #define Y second // #define all(a) (a).begin(), (a).end() // #define fillchar(a, x) memset(a, x, sizeof(a)) // // typedef pair< int , int > pii; // typedef long long ll; // typedef unsigned long long ull; // // #ifndef ONLINE_JUDGE // void RI(vector< int >&a, int n){a.resize(n); for ( int i=0;i<n;i++) scanf ( "%d" ,&a[i]);} // void RI(){} void RI( int &X){ scanf ( "%d" ,&X);} template < typename ...R> // void RI( int &f,R&...r){RI(f);RI(r...);} void RI( int *p, int *q){ int d=p<q?1:-1; // while (p!=q){ scanf ( "%d" ,p);p+=d;}} void print(){cout<<endl;} template < typename T> // void print( const T t){cout<<t<<endl;} template < typename F, typename ...R> // void print( const F f, const R...r){cout<<f<< ", " ;print(r...);} template < typename T> // void print(T*p, T*q){ int d=p<q?1:-1; while (p!=q){cout<<*p<< ", " ;p+=d;}cout<<endl;} // #endif // ONLINE_JUDGE // template < typename T> bool umax(T&a, const T&b){ return b<=a? false :(a=b, true );} // template < typename T> bool umin(T&a, const T&b){ return b>=a? false :(a=b, true );} // template < typename T> // void V2A(T a[], const vector<T>&b){ for ( int i=0;i<b.size();i++)a[i]=b[i];} // template < typename T> // void A2V(vector<T>&a, const T b[]){ for ( int i=0;i<a.size();i++)a[i]=b[i];} // // const double PI = acos (-1.0); // const int INF = 1e9 + 7; // // /* -------------------------------------------------------------------------------- */ struct Gauss { const static int maxn = 1e3 + 7; double A[maxn][maxn]; int n; double * operator [] ( int x) { return A[x]; } /** 要求系数矩阵可逆 A是增广矩阵,A[i][n]是第i个方程右边的常数bi 运行结束后 A[i][n]是第i个未知数的值 **/ void solve() { for ( int i = 0; i < n; i ++) { int r = i; for ( int j = i + 1; j < n; j ++) { if ( fabs (A[j][i]) > fabs (A[r][i])) r = j; } if (r != i) for ( int j = 0; j <= n; j ++) swap(A[r][j], A[i][j]); for ( int j = n; j >= i; j --) { for ( int k = i + 1; k < n; k ++) { A[k][j] -= A[k][i] / A[i][i] * A[i][j]; } } } for ( int i = n - 1; i >= 0; i --) { for ( int j = i + 1; j < n; j ++) { A[i][n] -= A[j][n] * A[i][j]; } A[i][n] /= A[i][i]; } } }; Gauss solver; int c, n; double p; int hsh[22][22]; void add( int x, int y, int z) { solver[c][x] += 1; solver[c][y] += -p; solver[c ++][z] += p - 1; } void init() { fillchar(solver.A, 0); c = 0; for ( int i = 0; i < 20; i ++) { for ( int j = i; j < 20; j ++) { int win = i + 1, unwin = max(i - 2, 0); add(hsh[i][j], hsh[min(win, j)][max(win, j)], hsh[unwin][j]); } } solver[c ++][hsh[19][20]] = 1; for ( int i = 0; i < c - 1; i ++) { solver[i][n] = 1; } } void pre_init() { int c = 0; for ( int i = 0; i < 20; i ++) { for ( int j = i; j < 20; j ++) { hsh[i][j] = c ++; } } hsh[19][20] = c ++; solver.n = n = c; } int main() { #ifndef ONLINE_JUDGE freopen ( "in.txt" , "r" , stdin); //freopen("out.txt", "w", stdout); #endif // ONLINE_JUDGE pre_init(); while (cin >> p) { init(); solver.solve(); printf ( "%.10f\n" , solver[0][n]); } return 0; } /* ******************************************************************************** */ |
标签:
原文地址:http://www.cnblogs.com/jklongint/p/4697237.html