标签:jvm bytecode 解释器 解析 resolve
上文探讨了:【JVM】模板解释器–如何根据字节码生成汇编码?
本篇,我们来关注下字节码的resolve过程。
上文虽然探讨了字节码到汇编码的过程,但是:
mov %rax,%(rcx,rbx,1) // 0x89 0x04 0x19
其中为什么要指定0x04和0x19呢?
搬出我们的代码:
public int swap2(CallBy a,CallBy b) {
int t = a.value;
a.value = b.value;
b.value = t;
return t;
}
换句话讲,我们的汇编代码是要将b.value赋给a.value:
//b.value怎么来的呢?
a.value = b.value
b.value是个整形的field,上述代码的关键字节码是putfield
,而模板解释器在初始化的时候(非运行时,这也是模板的意义所在)会调用下面的函数来生成对应的汇编码:
void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
transition(vtos, vtos);
const Register cache = rcx;
const Register index = rdx;
const Register obj = rcx;
const Register off = rbx;
const Register flags = rax;
const Register bc = c_rarg3;
/********************************
* 关键:这个函数在做什么?
********************************/
resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
jvmti_post_field_mod(cache, index, is_static);
// 上面resolve后,直接从cp cache中对应的entry中就可以获取到field
load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
// [jk] not needed currently
// volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
// Assembler::StoreStore));
Label notVolatile, Done;
__ movl(rdx, flags);
__ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
__ andl(rdx, 0x1);
// field address
const Address field(obj, off, Address::times_1);
Label notByte, notInt, notShort, notChar,
notLong, notFloat, notObj, notDouble;
__ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
assert(btos == 0, "change code, btos != 0");
__ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
__ jcc(Assembler::notZero, notByte);
// btos
// ...
// atos
// ...
// itos
{
/***************************************
* itos类型,我们的b.value是个整形,
* 所以对应的机器级别的类型是i,表示整形
****************************************/
__ pop(itos);
if (!is_static) pop_and_check_object(obj);
// 这里就是生成汇编码,也就是上篇博文探讨的主要内容了
__ movl(field, rax);
if (!is_static) {
patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
}
__ jmp(Done);
}
__ bind(notInt);
__ cmpl(flags, ctos);
__ jcc(Assembler::notEqual, notChar);
// ctos
// ...
// stos
// ...
// ltos
// ...
// ftos
// ...
// dtos
// ...
// Check for volatile store
// ...
}
来看看上面代码中的关键点:
// 1. 根据不同的字节码,选择对应的resolve函数.
// 2. 调用resolve函数.
// 3. 根据resolve后的结果,更新寄存器信息,做好衔接.
void TemplateTable::resolve_cache_and_index(int byte_no,
Register Rcache,
Register index,
size_t index_size) {
const Register temp = rbx;
assert_different_registers(Rcache, index, temp);
Label resolved;
assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
/****************
* 关键点1
*****************/
__ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
__ cmpl(temp, (int) bytecode()); // have we resolved this bytecode?
__ jcc(Assembler::equal, resolved);
// resolve first time through
address entry;
switch (bytecode()) {
case Bytecodes::_getstatic:
case Bytecodes::_putstatic:
case Bytecodes::_getfield:
case Bytecodes::_putfield:
/****************
* 关键点2
*****************/
entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
break;
// ...
default:
fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
break;
}
//
__ movl(temp, (int) bytecode());
__ call_VM(noreg, entry, temp);
//
// Update registers with resolved info
__ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
__ bind(resolved);
}
上面的代码又有两个关键点:
–get_cache_and_index_and_bytecode_at_bcp
函数,主要做的一些工作如下文所述。
cp cache指ConstantPoolCache,注意这不是一个一般意义上的缓存,其目的是用于解释器执行时,对字节码进行resolve的。
因为我们的putfield字节码会选择函数resolve_get_put
来进行resolve,来关注这个过程:
IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode))
// resolve field
fieldDescriptor info;
constantPoolHandle pool(thread, method(thread)->constants());
bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_putstatic);
bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
{
JvmtiHideSingleStepping jhss(thread);
/*******************
* 关键点
********************/
LinkResolver::resolve_field_access(info, pool, get_index_u2_cpcache(thread, bytecode),
bytecode, CHECK);
} // end JvmtiHideSingleStepping
// check if link resolution caused cpCache to be updated
if (already_resolved(thread)) return;
// compute auxiliary field attributes
TosState state = as_TosState(info.field_type());
Bytecodes::Code put_code = (Bytecodes::Code)0;
InstanceKlass* klass = InstanceKlass::cast(info.field_holder());
bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
!klass->is_initialized());
Bytecodes::Code get_code = (Bytecodes::Code)0;
if (!uninitialized_static) {
get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
if (is_put || !info.access_flags().is_final()) {
put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
}
}
// 设置cp cache entry
// 1. field的存/取字节码.
// 2. field所属的InstanceKlass(Java类在VM层面的抽象)指针.
// 3. index和offset
// 4. field在机器级别的类型状态.因为机器级别只有i(整)、a(引用)、v(void)等类型,这一点也可以帮助理解为什么解释器在生成汇编代码时,需要判断tos.
// 5. field是否final的.
// 6. field是否volatile的.
// 7. 常量池的holder(InstanceKlass*类型).
cache_entry(thread)->set_field(
get_code,
put_code,
info.field_holder(),
info.index(),
info.offset(),
state,
info.access_flags().is_final(),
info.access_flags().is_volatile(),
pool->pool_holder()
);
IRT_END
注意tos这个点:
其中,tos是指 T op– O f– S tack,也就是操作数栈(vm实现中是expression stack)顶的东东的类型.
上面的代码中又标出一个关键点:
看代码:
// 对field进行resolve,并检查其可访问性等信息
void LinkResolver::resolve_field_access(fieldDescriptor& result, constantPoolHandle pool, int index, Bytecodes::Code byte, TRAPS) {
// Load these early in case the resolve of the containing klass fails
// 从常量池中获取field符号
Symbol* field = pool->name_ref_at(index);
// 从常量池中获取field的签名符号
Symbol* sig = pool->signature_ref_at(index);
// resolve specified klass
KlassHandle resolved_klass;
// 关键点1
resolve_klass(resolved_klass, pool, index, CHECK);
// 关键点2
KlassHandle current_klass(THREAD, pool->pool_holder());
resolve_field(result, resolved_klass, field, sig, current_klass, byte, true, true, CHECK);
}
注意到上面的代码还调用了resolve_klass
和resolve_field
,我们一个一个看,
// resolve klass
void LinkResolver::resolve_klass(KlassHandle& result, constantPoolHandle pool, int index, TRAPS) {
Klass* result_oop = pool->klass_ref_at(index, CHECK);
result = KlassHandle(THREAD, result_oop);
}
上面的代码很简单,从常量池取出对应的klass,并同当前线程一起,封装为一个KlassHandle。
再接着看resolve_field:
// field的解析及链接
// 此过程将完成:
//
// 1. field的可访问性验证.
// 2. field所属的类的可访问性验证.
// 3. field所属的类的ClassLoaderData及当前执行的方法(Method)所属的类的ClassLoaderData的验证.
// 4. field所属的类中,如果对其它的类有依赖,要进行装载、解析和链接,如果没有找到,比如classpath中不包含,那么就报类似ClassDefNotFoundError的异常.
// 如果Jar包冲突,也在这里检测到,并报异常.
// 如果field所属的类,及其依赖的类都找到了,那么将ClassLoaderData的约束constraint进行合并.
// 5. 当前正在调用的方法的签名,从callee角度和caller角度来比较是否一致.
// 关于classLoader的问题,后续文章再展开吧,不是一句两句能说的清。
void LinkResolver::resolve_field(fieldDescriptor& fd, KlassHandle resolved_klass, Symbol* field, Symbol* sig,
KlassHandle current_klass, Bytecodes::Code byte, bool check_access, bool initialize_class,
TRAPS) {
assert(byte == Bytecodes::_getstatic || byte == Bytecodes::_putstatic ||
byte == Bytecodes::_getfield || byte == Bytecodes::_putfield ||
(byte == Bytecodes::_nop && !check_access), "bad field access bytecode");
bool is_static = (byte == Bytecodes::_getstatic || byte == Bytecodes::_putstatic);
bool is_put = (byte == Bytecodes::_putfield || byte == Bytecodes::_putstatic);
// Check if there‘s a resolved klass containing the field
if (resolved_klass.is_null()) {
ResourceMark rm(THREAD);
THROW_MSG(vmSymbols::java_lang_NoSuchFieldError(), field->as_C_string());
}
/************************
* 关键点1
*************************/
// Resolve instance field
KlassHandle sel_klass(THREAD, resolved_klass->find_field(field, sig, &fd));
// check if field exists; i.e., if a klass containing the field def has been selected
if (sel_klass.is_null()) {
ResourceMark rm(THREAD);
THROW_MSG(vmSymbols::java_lang_NoSuchFieldError(), field->as_C_string());
}
if (!check_access)
// Access checking may be turned off when calling from within the VM.
return;
/************************
* 关键点2
*************************/
// check access
check_field_accessability(current_klass, resolved_klass, sel_klass, fd, CHECK);
// check for errors
if (is_static != fd.is_static()) {
// ...
THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), msg);
}
// Final fields can only be accessed from its own class.
if (is_put && fd.access_flags().is_final() && sel_klass() != current_klass()) {
THROW(vmSymbols::java_lang_IllegalAccessError());
}
// initialize resolved_klass if necessary
// note 1: the klass which declared the field must be initialized (i.e, sel_klass)
// according to the newest JVM spec (5.5, p.170) - was bug (gri 7/28/99)
//
// note 2: we don‘t want to force initialization if we are just checking
// if the field access is legal; e.g., during compilation
if (is_static && initialize_class) {
sel_klass->initialize(CHECK);
}
if (sel_klass() != current_klass()) {
HandleMark hm(THREAD);
Handle ref_loader (THREAD, InstanceKlass::cast(current_klass())->class_loader());
Handle sel_loader (THREAD, InstanceKlass::cast(sel_klass())->class_loader());
{
ResourceMark rm(THREAD);
/************************
* 关键点3
*************************/
Symbol* failed_type_symbol =
SystemDictionary::check_signature_loaders(sig,
ref_loader, sel_loader,
false,
CHECK);
if (failed_type_symbol != NULL) {
// ...
THROW_MSG(vmSymbols::java_lang_LinkageError(), buf);
}
}
}
// return information. note that the klass is set to the actual klass containing the
// field, otherwise access of static fields in superclasses will not work.
}
上面的代码,我们梳理出三个跟本主题相关的关键点,已在注释中标出,我们来看:
// 关键点1 :
// 获取field所属的类或接口对应的klass,或者NULL,如果是NULL就抛异常了
KlassHandle sel_klass(THREAD, resolved_klass->find_field(field, sig, &fd));
// 1. 如果是resolved_klass中的field,返回resolved_klass
// 2. 如果1不满足,尝试返回接口或接口的超类(super interface)对应的klass(递归)
// 3. 如果1、2点都不满足,尝试返回父类或超类对应的klass(递归)或者NULL.
Klass* InstanceKlass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
// search order according to newest JVM spec (5.4.3.2, p.167).
// 1) search for field in current klass
if (find_local_field(name, sig, fd)) {
return const_cast<InstanceKlass*>(this);
}
// 2) search for field recursively in direct superinterfaces
{ Klass* intf = find_interface_field(name, sig, fd);
if (intf != NULL) return intf;
}
// 3) apply field lookup recursively if superclass exists
{ Klass* supr = super();
if (supr != NULL) return InstanceKlass::cast(supr)->find_field(name, sig, fd);
}
// 4) otherwise field lookup fails
return NULL;
}
// 关键点2:
// 1. resolved_klass来自当前线程所执行的当前方法的当前字节码所属的常量池.
// 2. sel_klass是field所属的类或接口对应的klass
// 3. current_klass是常量池所属的klass(pool_holder).
// 4. 3种klass可以相同,也可以不同.可以想象一个调用链,依赖的各个class.
check_field_accessability(current_klass, resolved_klass, sel_klass, fd, CHECK);
// 关键点3:
// ref_loader代表了current_klass的classLoader
Handle ref_loader (THREAD, InstanceKlass::cast(current_klass())->class_loader());
// sel_loader代表了sel_klass的classLoader
Handle sel_loader (THREAD, InstanceKlass::cast(sel_klass())->class_loader());
// 根据签名符号sig、ref_loader、sel_loader来检查classLoader的约束是否一致,如果不一致就会抛异常,所谓一致不是相同但包含相同的情况,如果一致,那么就合并约束,同时还要进行依赖(depedencies)链的维护.
// 由于内容比较多,本篇不展开.
Symbol* failed_type_symbol =
SystemDictionary::check_signature_loaders(sig,
ref_loader, sel_loader,
false,
CHECK);
上面的关键点解析都在注释中了,其中有的地方内容太多,不宜在本篇展开。
那么,如何获取当前执行的字节码对应的cp cache entry呢?
关键代码如下:
// 获取当前正在执行的bytecode对应的cp cache entry
static ConstantPoolCacheEntry* cache_entry(JavaThread *thread) {
return cache_entry_at(thread, Bytes::get_native_u2(bcp(thread) + 1));
}
// ↓
// 获取解释器当前的(B)yte (C)ode (P)ointer,也就是当前指令地址,以指针表达
static address bcp(JavaThread *thread) {
return last_frame(thread).interpreter_frame_bcp();
}
// ↓
// 获取cp cache entry
static ConstantPoolCacheEntry* cache_entry_at(JavaThread *thread, int i) {
return method(thread)->constants()->cache()->entry_at(i);
}
// ↓
// 获取当前正在执行的方法
static Method* method(JavaThread *thread) {
return last_frame(thread).interpreter_frame_method();
}
// ↓
// 获取interpreterState->_method,也就是当前正在执行的方法
Method* frame::interpreter_frame_method() const {
assert(is_interpreted_frame(), "interpreted frame expected");
Method* m = *interpreter_frame_method_addr();
assert(m->is_method(), "not a Method*");
return m;
}
// ↓
// 获取interpreterState->_method的地址
inline Method** frame::interpreter_frame_method_addr() const {
assert(is_interpreted_frame(), "must be interpreted");
return &(get_interpreterState()->_method);
}
// ↓
// 获取interpreterState
inline interpreterState frame::get_interpreterState() const {
return ((interpreterState)addr_at( -((int)sizeof(BytecodeInterpreter))/wordSize ));
}
// ↓
// interpreterState实际是个BytecodeInterpreter型指针
typedef class BytecodeInterpreter* interpreterState;
上述过程总结下:
1、获取bcp,也就是解释器当前正在执行的字节码的地址,以指针形式返回.
2、bcp是通过当前线程的调用栈的最后一帧来获取的,并且是个解释器栈帧.为什么是最后一帧?
方法1 栈帧1
调用 -> 方法2 栈帧2
...
调用 -> 方法n 栈帧n // 最后一帧
每个方法在调用时都会用一个栈帧frame来描述调用的状态信息,最后调用的方法就是当前方法,所以是取最后一帧.
3、当前方法的地址是通过栈帧中保存的interpreterState来获取的,而这个interpreterState是个BytecodeInterpreter型的解释器,不是模板解释器。
4、获取到方法的地址后,就可以获取到方法所属的常量池了,接着从常量池对应的cp cache中就可以获取到对应的entry了。
5、第4点提到对应,怎么个对应法?想象数组的下标,这个下标是什么呢?就是对bcp的一个整形映射。
注意BytecodeInterpreter和TemplateInterpreter不是一码事.
BytecodeInterpreter的一些关键字段,帮助理解bcp、thread、cp、cp cache在解释器栈帧中意义:
private:
JavaThread* _thread; // the vm‘s java thread pointer
address _bcp; // instruction pointer
intptr_t* _locals; // local variable pointer
ConstantPoolCache* _constants; // constant pool cache
Method* _method; // method being executed
DataLayout* _mdx; // compiler profiling data for current bytecode
intptr_t* _stack; // expression stack
messages _msg; // frame manager <-> interpreter message
frame_manager_message _result; // result to frame manager
interpreterState _prev_link; // previous interpreter state
oop _oop_temp; // mirror for interpreted native, null otherwise
intptr_t* _stack_base; // base of expression stack
intptr_t* _stack_limit; // limit of expression stack
BasicObjectLock* _monitor_base; // base of monitors on the native stack
在进行resolve后,字节码就在ConstantPoolCache对应的Entry中了,下一次再执行就不需要resolve。
至于BytecodeInterpreter是个什么解释器,和模板解释器有啥关系,后面再说吧。
本文简要探讨了:
字节码的resolve过程。
终。
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:jvm bytecode 解释器 解析 resolve
原文地址:http://blog.csdn.net/gsky1986/article/details/47209389