标签:
题目大意:有n间商店,m个货源,k种商品
现在给出每间商店所需的商品个数和每个货源能提供的商品数量,和货源运输货物到商店的代价
问能否满足所有商店的需求,且代价最小
解题思路:每种商品的运输是是不相关的,所以可以将每种商品的运输分离出来求
超级源点—货源,容量为供货量,代价为0
货源—商店,容量为INF,代价为运输代价
商店—超级汇点,容量为需求量,代价为0
每次进行判断,如果不能满足的话,直接赋值为-1,也就是说后面可以不用再跑了,因为不可能满足了,判断条件就是取反,-1取反刚好是0
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
#define N 1010
#define INF 0x3f3f3f3f
struct Edge{
int from, to, cap, flow ,cost;
Edge() {}
Edge(int from, int to, int cap, int flow, int cost):from(from), to(to), cap(cap), flow(flow), cost(cost) {}
};
struct MCMF{
int n, m, source, sink;
vector<Edge> edges;
vector<int> G[N];
int d[N], f[N], p[N];
bool vis[N];
void init(int n) {
this->n = n;
for (int i = 0; i <= n; i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back(Edge(from, to, cap, 0, cost));
edges.push_back(Edge(to, from, 0, 0, -cost));
m = edges.size();
G[from].push_back(m - 2);
G[to].push_back(m - 1);
}
bool BellmanFord(int s, int t, int &flow, int &cost) {
for (int i = 0; i <= n; i++)
d[i] = INF;
memset(vis, 0, sizeof(vis));
vis[s] = 1; d[s] = 0; f[s] = INF; p[s] = 0;
queue<int> Q;
Q.push(s);
while (!Q.empty()) {
int u = Q.front();
Q.pop();
vis[u] = 0;
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
f[e.to] = min(f[u], e.cap - e.flow);
if (!vis[e.to]) {
vis[e.to] = true;
Q.push(e.to);
}
}
}
}
if (d[t] == INF)
return false;
flow += f[t];
cost += d[t] * f[t];
int u = t;
while (u != s) {
edges[p[u]].flow += f[t];
edges[p[u] ^ 1].flow -= f[t];
u = edges[p[u]].from;
}
return true;
}
int Mincost(int s, int t, int &cost) {
int flow = 0;
while (BellmanFord(s, t, flow, cost));
return flow;
}
};
MCMF mcmf;
#define M 60
int need[M][M], supply[M][M];
int n, m, k;
void init() {
for (int i = 1; i <= n; i++)
for (int j = 1; j <= k; j++)
scanf("%d", &need[i][j]);
for (int i = 1; i <= m; i++)
for (int j = 1; j <= k; j++)
scanf("%d", &supply[i][j]);
int s = n + m + 1, t = n + m + 2;
int cost = 0, tmp;
for (int i = 1; i <= k; i++) {
mcmf.init(t);
int Sum = 0;
for (int j = 1; j <= n; j++) {
mcmf.AddEdge(j, t, need[j][i], 0);
Sum += need[j][i];
}
for (int j = 1; j <= m; j++)
mcmf.AddEdge(s, j + n, supply[j][i], 0);
for (int j = 1; j <= n; j++)
for (int l = 1; l <= m; l++) {
scanf("%d", &tmp);
mcmf.AddEdge(n + l, j, INF, tmp);
}
if (~cost && mcmf.Mincost(s, t, cost) < Sum)
cost = -1;
}
printf("%d\n", cost);
}
int main() {
while (scanf("%d%d%d", &n, &m, &k) && n + m + k) {
init();
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ - 2516 Minimum Cost (MCMF)
标签:
原文地址:http://blog.csdn.net/l123012013048/article/details/47257267