码迷,mamicode.com
首页 > 其他好文 > 详细

Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree

时间:2015-08-03 22:33:00      阅读:138      评论:0      收藏:0      [点我收藏+]

标签:

           将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资

  料和decision tree相结合呢?方法很类似于前面讲过的bagging,通过采样资料来使资料获得不同的权重。

          技术分享

          技术分享

          一棵完全的树的权值会无限大,可能出现过拟合。因此需要得到一棵弱分类的树,方法如下:

          技术分享

          接下来比较深入的分析adaboost。经过代换,出现了如下惊人的结果: 某个资料的权重正比于投票分数

          技术分享

          联系到之前学习的SVM,发现了一个秘密:投票的分数就是某个点到分隔线的距离(margin)。分数越高越好,就意味着u越小越好。在Adaboost过

程中,如果u的和越来越小,意味着margin越来越大,证明adaboost效果越好。

          技术分享

         接下来这段没有听懂:大概是通过errADA作为上界,将zero-one做的更好。

         技术分享

         下面是证明通过adaboost确实能做的更好。中间是一系列推导就不说了,直接上下图。这个推导是从另一方面解释Adaboost:为g赋权重的过程,实

际上就是优化的过程。

           技术分享

        从上面可以看出,adaboost的过程,实际上就是选择最优的h,选择最优的步长n,不断对其进行优化的过程。将其推广到任意的err function,

任意的h,就得出了一种类似adaboost的方法:GradientBoost。

        技术分享

       接下来将其用于regression,非常的理论。最后找到得到h的方法:对x,y-s做regression。

       技术分享

      那么如何得到步长呢?最后得出如下形式:对余数和g做regression

      技术分享 

     最后是这个算法的过程:

     技术分享

   下面是对aggregate的一个总结。对于blending(已经得到各种g)

  技术分享

  对于learning(需要学习得到g并将其进行组合):

  技术分享

  将这些模型进行糅合:

 技术分享

 选择合适的aggregation模型:

 技术分享

 

Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree

标签:

原文地址:http://www.cnblogs.com/573177885qq/p/4699693.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!