码迷,mamicode.com
首页 > 其他好文 > 详细

Numbering Paths (Uva 125 floyd+dp思想)

时间:2015-08-04 23:04:29      阅读:114      评论:0      收藏:0      [点我收藏+]

标签:numbering paths   uva 125   floyd+dp思想   

Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

 Status

Description

技术分享

Background

Problems that process input and generate a simple ``yes‘‘ or ``no‘‘ answer are called decision problems. One class of decision problems, the NP-complete problems, are not amenable to general efficient solutions. Other problems may be simple as decision problems, but enumerating all possible ``yes‘‘ answers may be very difficult (or at least time-consuming).

This problem involves determining the number of routes available to an emergency vehicle operating in a city of one-way streets.

The Problem

Given the intersections connected by one-way streets in a city, you are to write a program that determines the number of different routes between each intersection. A route is a sequence of one-way streets connecting two intersections.

Intersections are identified by non-negative integers. A one-way street is specified by a pair of intersections. For example, 技术分享 indicates that there is a one-way street from intersection j to intersection k. Note that two-way streets can be modeled by specifying two one-way streets: 技术分享 and 技术分享 .

Consider a city of four intersections connected by the following one-way streets:

    0  1
    0  2
    1  2
    2  3
There is one route from intersection 0 to 1, two routes from 0 to 2 (the routes are 技术分享 and 技术分享 ), two routes from 0 to 3, one route from 1 to 2, one route from 1 to 3, one route from 2 to 3, and no other routes.

It is possible for an infinite number of different routes to exist. For example if the intersections above are augmented by the street 技术分享 , there is still only one route from 0 to 1, but there are infinitely many different routes from 0 to 2. This is because the street from 2 to 3 and back to 2 can be repeated yielding a different sequence of streets and hence a different route. Thus the route 技术分享 is a different route than 技术分享 .

The Input

The input is a sequence of city specifications. Each specification begins with the number of one-way streets in the city followed by that many one-way streets given as pairs of intersections. Each pair 技术分享 represents a one-way street from intersection j to intersection k. In all cities, intersections are numbered sequentially from 0 to the ``largest‘‘ intersection. All integers in the input are separated by whitespace. The input is terminated by end-of-file.

There will never be a one-way street from an intersection to itself. No city will have more than 30 intersections.

The Output

For each city specification, a square matrix of the number of different routes from intersection j to intersection k is printed. If the matrix is denoted M, then M[j][k] is the number of different routes from intersection j to intersection k. The matrix M should be printed in row-major order, one row per line. Each matrix should be preceded by the string ``matrix for cityk‘‘ (with k appropriately instantiated, beginning with 0).

If there are an infinite number of different paths between two intersections a -1 should be printed. DO NOT worry about justifying and aligning the output of each matrix. All entries in a row should be separated by whitespace.

Sample Input

7 0 1 0 2 0 4 2 4 2 3 3 1 4 3
5 
0 2 
0 1 1 5 2 5 2 1
9
0 1 0 2 0 3
0 4 1 4 2 1
2 0
3 0
3 1

Sample Output

matrix for city 0
0 4 1 3 2
0 0 0 0 0
0 2 0 2 1
0 1 0 0 0
0 1 0 1 0
matrix for city 1
0 2 1 0 0 3
0 0 0 0 0 1
0 1 0 0 0 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
matrix for city 2
-1 -1 -1 -1 -1
0 0 0 0 1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
0 0 0 0 0


题意:给出一张图,求每两个点之间的不同路径的条数,按照矩阵输出,若i到j有无数条则mp[i][j]=-1.

思路:关键是怎样判断无数条,考虑:若一个点经过一条路可以回来,即mp[i][i]>0,那么它就构成了一个环,我可以在这一无限的绕圈,知道这个了就好办了。另外一条路径经过这个点的话也是无数条。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

#define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 50;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005;

int mp[maxn][maxn];
int n,m,cas;

void floyd()
{
    for (int k=0;k<n;k++)
    {
        for (int i=0;i<n;i++)
        {
            for (int j=0;j<n;j++)
                mp[i][j]=mp[i][j]+mp[i][k]*mp[k][j];
        }
    }
    for (int k=0;k<n;k++)
    {
        if (mp[k][k])
        {
            mp[k][k]=-1;
            for (int i=0;i<n;i++)
            {
                for (int j=0;j<n;j++)
                    if (mp[i][k]&&mp[k][j])
                    mp[i][j]=-1;
            }
        }
    }
    printf("matrix for city %d\n",cas++);
    for (int i=0;i<n;i++)
    {
        pf("%d",mp[i][0]);
        for (int j=1;j<n;j++)
            printf(" %d",mp[i][j]);
        pf("\n");
    }
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
    int i,j,u,v;
    cas=0;
    while (~sf(m))
    {
        n=0;
        memset(mp,0,sizeof(mp));
        for (i=0;i<m;i++)
        {
            sff(u,v);
            mp[u][v]=1;
            n=max(n,max(u,v));
        }
        n++;
        floyd();
    }
    return 0;
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

Numbering Paths (Uva 125 floyd+dp思想)

标签:numbering paths   uva 125   floyd+dp思想   

原文地址:http://blog.csdn.net/u014422052/article/details/47282839

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!