码迷,mamicode.com
首页 > 其他好文 > 详细

BZOJ3095 : 二元组

时间:2015-08-05 00:42:31      阅读:162      评论:0      收藏:0      [点我收藏+]

标签:

 

\[\begin{eqnarray*}
&&\sum_{i=0}^{n-1}\left(ki+b-a_i\right)^2\\
&=&\sum_{i=0}^{n-1}\left(k^2i^2+b^2+a_i^2+2kbi-2kia_i-2ba_i\right)\\
&=&k^2\sum_{i=0}^{n-1}i^2+nb^2+\sum_{i=0}^{n-1}a_i^2+2kb\sum_{i=0}^{n-1}i-2k\sum_{i=0}^{n-1}ia_i-2b\sum_{i=0}^{n-1}a_i\\
\end{eqnarray*}\]

  设
\[\begin{eqnarray*}
A&=&\sum_{i=0}^{n-1}i^2\\
B&=&\sum_{i=0}^{n-1}i\\
C&=&\sum_{i=0}^{n-1}ia_i\\
D&=&\sum_{i=0}^{n-1}a_i\\
\end{eqnarray*}\]
  则只需最小化
\[\begin{eqnarray*}
&&Ak^2+nb^2+2kBb-2kC-2Db\\
&=&nb^2+(2kB-2D)b+Ak^2-2kC\\
\end{eqnarray*}\]
  这是个关于$b$的二次函数,显然当$b$取$\frac{D-kB}{n}$时取得最小值,将$b$用$k$表示,则
\[\begin{eqnarray*}
&&Ak^2+nb^2+2kBb-2kC-2Db\\
&=&Ak^2+\frac{\left(D-kB\right)^2}{n}+\frac{2kB\left(D-kB\right)}{n}-2kC-\frac{2D\left(D-kB\right)}{n}\\
&=&Ak^2+\frac{-D^2-B^2k^2+2BDk}{n}-2Ck\\
&=&\frac{nAk^2-2nCk-D^2-B^2k^2+2BDk}{n}\\
&=&\frac{\left(nA-B^2\right)k^2+\left(2BD-2nC\right)k-D^2}{n}\\
\end{eqnarray*}\]
  这也是个关于$k$的二次函数,显然当$k$取$\frac{nC-BD}{nA-B^2}$时取得最小值。直接计算即可,时间复杂度$O(n)$。

 

#include<cstdio>
int n,i,j;double A,B,C,D,k,b;
inline void read(int&a){
  char c;bool f=0;a=0;
  while(!((((c=getchar())>=‘0‘)&&(c<=‘9‘))||(c==‘-‘)));
  if(c!=‘-‘)a=c-‘0‘;else f=1;
  while(((c=getchar())>=‘0‘)&&(c<=‘9‘))(a*=10)+=c-‘0‘;
  if(f)a=-a;
}
int main(){
  for(read(n);i<n;i++)read(j),A+=1.0*i*i,B+=i,C+=1.0*i*j,D+=j;
  k=(C*n-B*D)/(A*n-B*B),b=(D-k*B)/n;
  return printf("%.7f %.7f",b,k),0;
}

  

BZOJ3095 : 二元组

标签:

原文地址:http://www.cnblogs.com/clrs97/p/4703437.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!