码迷,mamicode.com
首页 > 其他好文 > 详细

曲线拟合的最小二乘法(基于OpenCV实现)

时间:2015-08-06 10:48:55      阅读:162      评论:0      收藏:0      [点我收藏+]

标签:

1.原理

在现实中经常遇到这样的问题,一个函数并不是以某个数学表达式的形式给出,而是以一些自变量与因变量的对应表给出,老师讲课的时候举的个例子是犯罪人的身高和留下的脚印长,可以测出一些人的数据然后得到一张表,它反应的是一个函数,回归的意思就是将它还原成数学表达式,这个式子也称为经验表达式,之所以叫经验就是说它不完全是实际中的那样准确,是有一定偏差的,只是偏差很小罢了。

最小二乘法     设经验 方程是y=F(x),方程中含有一些待定系数an,给出真实值{(xi,yi)|i=1,2,...n},将这些x,y值代入方程然后作 差,可以描述误差:yi-F(xi),为了考虑整体的误差,可以取平方和,之所以要平方是考虑到误差可正可负直接相加可以相互抵消,所以记误差为:

e=∑(yi-F(xi))^2

    它是一个多元函数,有an共n个未知量,现在要求的是最小值。所以必然满足对各变量的偏导等于0,于是得到n个方程:

de/da1=0 de/da2=0 ... de/dan=0

n个方程确定n个未知量为常量是理论上可以解出来的。用这种误差分析的方法进行回归方程的方法就是最小二乘法。

线性回归 如果经验方程是线性的,形如y=ax+b,就是线性回归。按上面的分析,误差函数为:

e=∑(yi-axi-b)^2

各偏导为:

de/da=2∑(yi-axi-b)xi=0 de/db=-2∑(yi-axi-b)=0

于是得到关于a,b的线性方程组:

(∑xi^2)a+(∑xi)b=∑yixi (∑xi)a+nb=∑yi

设A=∑xi^2,B=∑xi,C=∑yixi,D=∑yi,则方程化为:

Aa+Bb=C Ba+nb=D

解出a,b得:

a=(Cn-BD)/(An-BB) b=(AD-CB)/(An-BB) 这就是我们要进行的算法。

2.C++实现 /*  * =====================================================================================  *  *       Filename:  nihe.cpp  *  *    Description:  A least square method for fitting a curve  *  *        Version:  1.0  *        Created:  03/21/2009 12:32:56 PM  *       Revision:  none  *       Compiler:  gcc  *  *         Author:  Futuredaemon (BUPT), gnuhpc@gmail.com  *        Company:  BUPT_UNITED  *  * =====================================================================================  */

#include  <stdlib.h> #include  <iostream> #include  <valarray>

using namespace std;

int main(int argc, char *argv[]) {     int num = 0;

    cout << " Input how many numbers you want to calculate:";     cin >> num;

    valarray<double> data_x(num);     valarray<double> data_y(num);

    while( num )     {         cout << "Input the "<< num <<" of x:";         cin >> data_x[num-1];         cout << "Input the "<< num <<" of y:";         cin >> data_y[num-1];         num--;     }

    double A =0.0;     double B =0.0;     double C =0.0;     double D =0.0;

    A = (data_x*data_x).sum();     B = data_x.sum();     C = (data_x*data_y).sum();     D = data_y.sum();

    double k,b,tmp =0;     if(tmp=(A*data_x.size()-B*B))     {         k = (C*data_x.size()-B*D)/tmp;         b = (A*D-C*B)/tmp;     }

    else     {         k=1;         b=0;     }

    cout <<"k="<<k<<endl;     cout <<"b="<<b<<endl;

    return 0; }

 

3.OpenCV结构实现 #include "cv.h" #include <iostream>

using namespace std;

int main(int argc, char *argv[]) {   int i=0;   int j=0;   int num;   double A,B,C,D;   double k,b,tmp=0;   cout <<"Input how many numbers you want to calculate:";   cin >>num;

  CvMat *mat1=cvCreateMat(1,num,CV_64FC1);   CvMat *mat2=cvCreateMat(1,num,CV_64FC1);   CvMat *mattmp=cvCreateMat(1,num,CV_64FC1);

  for (j=0;j<mat1->cols;j++)     {       cout << "data X"<<j<<"=";       cin>>CV_MAT_ELEM(*mat1,double,0,j);       cout << "data Y"<<j<<"=";       cin>>CV_MAT_ELEM(*mat2,double,0,j);

    }

  for (j=0;j<mat1->cols;j++)     {

      cout<<"X="<<CV_MAT_ELEM(*mat1,double,0,j)           <<",Y="<<CV_MAT_ELEM(*mat2,double,0,j)<<endl;     }

  cvMul(mat1,mat1,mattmp,1);   A = cvSum(mattmp).val[0];

  B = cvSum(mat1).val[0];

  cvMul(mat1,mat2,mattmp,1);   C = cvSum(mattmp).val[0];

  D = cvSum(mat2).val[0];

  tmp = A*mat1->cols-B*B;

  k = (C*mat1->cols-B*D)/tmp;   b = (A*D-C*B)/tmp;

  cout << "k=" << k <<endl;   cout << "b=" << b <<endl;

  cvReleaseMat(&mat1);   cvReleaseMat(&mat2);

  return 0; }

曲线拟合的最小二乘法(基于OpenCV实现)

标签:

原文地址:http://www.cnblogs.com/yuxinJ/p/4707281.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!