time(2) / time_t(秒)
ftime(3) / struct timeb(毫秒)
gettimeofday(2) / struct timeval(微秒)
clock_gettime(2) / struct timespec(微秒)
还有gmtime / localtime / timegm / mktime / strftime / struct tm等与当前时间无关的时间格式转换函数。
sleep(3)
alarm(3)
usleep(3)
nanosleep(2)
clock_nanosleep(2)
gettimer(2) / settitimer(2)
timer_create(2) / timer_settime(2) / tiemr_gettime(2) / timer_delete(2)
timerfd_create(2) / timerfd_gettime(2) / timerfd_settime(2)
取舍如下:
1、计时只使用gettimeofday(2)来获取当前时间。
2、定时只使用timerfd_*系列函数来处理定时任务。
这节介绍muduo中定时器的实现。先看一个2.6内核新增的有关定时的系统调用,基于这几个系统调用可以实现基于文件描述符的定时器。即可是定时,使文件描述符在某一特定时间可读。
#include <sys/timerfd.h>
int timerfd_create(int clockid, int flags);
int timerfd_settime(int fd, int flags,
onst struct itimerspec *new_value,
struct itimerspec *old_value);
int timerfd_gettime(int fd, struct itimerspec *curr_value);
1、timerfd_create用于创建一个定时器文件,函数返回值是一个文件句柄fd。
2、timerfd_settime用于设置新的超时时间,并开始计时。flag为0表示相对时间,为1表示绝对时间。new_value为这次设置的新时间,old_value为上次设置的时间。返回0表示设置成功。
3、timerfd_gettime用于获得定时器距离下次超时还剩下的时间。如果调用时定时器已经到期,并且该定时器处于循环模式(设置超时时间时struct itimerspec::it_interval不为0),那么调用此函数之后定时器重新开始计时。
TimerId非常简单,它被设计用来取消Timer的,它的结构很简单,只有一个Timer指针和其序列号。
class TimerId : public muduo::copyable
{
public:
TimerId()
: timer_(NULL),
sequence_(0)
{
}
TimerId(Timer* timer, int64_t seq)
: timer_(timer),
sequence_(seq)
{
}
// default copy-ctor, dtor and assignment are okay
friend class TimerQueue;
private:
Timer* timer_;
int64_t sequence_;
};
TimerQueue为其友元,可以操作其私有数据。
Timer封装了定时器的一些参数,例如超时回调函数、超时时间、定时器是否重复、重复间隔时间、定时器的序列号。其函数大都是设置这些参数,run()用来调用回调函数,restart()用来重启定时器(如果设置为重复)。其源码相对简单
Timer.h
class Timer : boost::noncopyable
{
public:
Timer(const TimerCallback& cb, Timestamp when, double interval)
: callback_(cb),//回调函数
expiration_(when),//超时时间
interval_(interval),//如果重复,间隔时间
repeat_(interval > 0.0),//是否重复
sequence_(s_numCreated_.incrementAndGet())//当前定时器的序列号
{ }
#ifdef __GXX_EXPERIMENTAL_CXX0X__
Timer(TimerCallback&& cb, Timestamp when, double interval)
: callback_(std::move(cb)),
expiration_(when),
interval_(interval),
repeat_(interval > 0.0),
sequence_(s_numCreated_.incrementAndGet())
{ }
#endif
void run() const//超时时调用回调函数
{
callback_();
}
Timestamp expiration() const { return expiration_; }
bool repeat() const { return repeat_; }
int64_t sequence() const { return sequence_; }
void restart(Timestamp now);
static int64_t numCreated() { return s_numCreated_.get(); }
private:
const TimerCallback callback_;//回调函数
Timestamp expiration_;//超时时间(绝对时间)
const double interval_;//间隔多久重新闹铃
const bool repeat_;//是否重复
const int64_t sequence_;//Timer序号
static AtomicInt64 s_numCreated_;//创建Timer序号使用,static
};
Timer.cc
AtomicInt64 Timer::s_numCreated_;
void Timer::restart(Timestamp now)
{
if (repeat_)//如果设置重复,则重新添加
{
expiration_ = addTime(now, interval_);//将now和interval_相加
}
else
{
expiration_ = Timestamp::invalid();
}
}
虽然TimerQueue中有Queue,但是其实现时基于Set的,而不是Queue。这样可以高效地插入、删除定时器,且找到当前已经超时的定时器。TimerQueue的public接口只有两个,添加和删除。
void addTimerInLoop(Timer* timer);
void cancelInLoop(TimerId timerId);
内部有channel,和timerfd关联。添加新的Timer后,在超时后,timerfd可读,会处理channel事件,之后调用Timer的回调函数;在timerfd的事件处理后,还有检查一遍超时定时器,如果其属性为重复还有再次添加到定时器集合中。
内部有两种类型的Set
typedef std::pair<Timestamp, Timer*> Entry;
typedef std::set<Entry> TimerList;
typedef std::pair<Timer*, int64_t> ActiveTimer;
typedef std::set<ActiveTimer> ActiveTimerSet;
一个Set元素类型为超时事件和Timer*指针;另一种为Timer*指针和定时器序列号。
下面是源码
TimerQueue.h
class TimerQueue : boost::noncopyable
{
public:
TimerQueue(EventLoop* loop);
~TimerQueue();
///
/// Schedules the callback to be run at given time,
/// repeats if @c interval > 0.0.
///
/// Must be thread safe. Usually be called from other threads.
TimerId addTimer(const TimerCallback& cb,
Timestamp when,
double interval);
#ifdef __GXX_EXPERIMENTAL_CXX0X__
TimerId addTimer(TimerCallback&& cb,
Timestamp when,
double interval);
#endif
void cancel(TimerId timerId);
private:
// FIXME: use unique_ptr<Timer> instead of raw pointers.
typedef std::pair<Timestamp, Timer*> Entry;//std::pair支持比较运算
typedef std::set<Entry> TimerList;//元素为超时时间和指向超时的定时器
typedef std::pair<Timer*, int64_t> ActiveTimer;
typedef std::set<ActiveTimer> ActiveTimerSet;//元素为定时器和其序列号
void addTimerInLoop(Timer* timer);
void cancelInLoop(TimerId timerId);
// called when timerfd alarms
void handleRead();
// move out all expired timers
std::vector<Entry> getExpired(Timestamp now);
void reset(const std::vector<Entry>& expired, Timestamp now);
bool insert(Timer* timer);
EventLoop* loop_;
const int timerfd_;
Channel timerfdChannel_;
// Timer list sorted by expiration
TimerList timers_;//定时器集合
// for cancel()
ActiveTimerSet activeTimers_;
bool callingExpiredTimers_; /* atomic *///是否正在处理超时事件
ActiveTimerSet cancelingTimers_;//取消了的定时器的集合
};
TimerQueue.cpp
int createTimerfd()//创建timerfd
{
int timerfd = ::timerfd_create(CLOCK_MONOTONIC,
TFD_NONBLOCK | TFD_CLOEXEC);//非阻塞
if (timerfd < 0)
{
LOG_SYSFATAL << "Failed in timerfd_create";
}
return timerfd;
}
struct timespec howMuchTimeFromNow(Timestamp when)//现在距离超时时间when还有多久
{
int64_t microseconds = when.microSecondsSinceEpoch()
- Timestamp::now().microSecondsSinceEpoch();
if (microseconds < 100)
{
microseconds = 100;
}
struct timespec ts;
ts.tv_sec = static_cast<time_t>(
microseconds / Timestamp::kMicroSecondsPerSecond);
ts.tv_nsec = static_cast<long>(
(microseconds % Timestamp::kMicroSecondsPerSecond) * 1000);
return ts;
}
void readTimerfd(int timerfd, Timestamp now)//处理超时事件。超时后,timerfd变为可读
{
uint64_t howmany;
ssize_t n = ::read(timerfd, &howmany, sizeof howmany);//读timerfd,howmany为超时次数
LOG_TRACE << "TimerQueue::handleRead() " << howmany << " at " << now.toString();
if (n != sizeof howmany)
{
LOG_ERROR << "TimerQueue::handleRead() reads " << n << " bytes instead of 8";
}
}
void resetTimerfd(int timerfd, Timestamp expiration)//重新设置定时器
{
// wake up loop by timerfd_settime()
struct itimerspec newValue;
struct itimerspec oldValue;
bzero(&newValue, sizeof newValue);
bzero(&oldValue, sizeof oldValue);
newValue.it_value = howMuchTimeFromNow(expiration);
int ret = ::timerfd_settime(timerfd, 0, &newValue, &oldValue);
if (ret)
{
LOG_SYSERR << "timerfd_settime()";
}
}
TimerQueue::TimerQueue(EventLoop* loop)
: loop_(loop),
timerfd_(createTimerfd()),//创建timerfd
timerfdChannel_(loop, timerfd_),//timerfd相关的channel
timers_(),
callingExpiredTimers_(false)
{
timerfdChannel_.setReadCallback(
boost::bind(&TimerQueue::handleRead, this));//设置回调函数,读timerfd
// we are always reading the timerfd, we disarm it with timerfd_settime.
timerfdChannel_.enableReading();//timerfd对应的channel监听事件为可读事件
}
TimerQueue::~TimerQueue()
{
timerfdChannel_.disableAll();
timerfdChannel_.remove();
::close(timerfd_);
// do not remove channel, since we‘re in EventLoop::dtor();
for (TimerList::iterator it = timers_.begin();
it != timers_.end(); ++it)
{
delete it->second;//释放Timer*
}
}
TimerId TimerQueue::addTimer(const TimerCallback& cb,//添加新的定时器
Timestamp when,
double interval)
{
Timer* timer = new Timer(cb, when, interval);
loop_->runInLoop(
boost::bind(&TimerQueue::addTimerInLoop, this, timer));
return TimerId(timer, timer->sequence());
}
#ifdef __GXX_EXPERIMENTAL_CXX0X__
TimerId TimerQueue::addTimer(TimerCallback&& cb,
Timestamp when,
double interval)
{
Timer* timer = new Timer(std::move(cb), when, interval);
loop_->runInLoop(
boost::bind(&TimerQueue::addTimerInLoop, this, timer));
return TimerId(timer, timer->sequence());
}
#endif
void TimerQueue::cancel(TimerId timerId)
{
loop_->runInLoop(
boost::bind(&TimerQueue::cancelInLoop, this, timerId));
}
void TimerQueue::addTimerInLoop(Timer* timer)
{
loop_->assertInLoopThread();
bool earliestChanged = insert(timer);//插入成功,则启动
if (earliestChanged)
{
resetTimerfd(timerfd_, timer->expiration());//启动定时器
}
}
void TimerQueue::cancelInLoop(TimerId timerId)
{
loop_->assertInLoopThread();
assert(timers_.size() == activeTimers_.size());
ActiveTimer timer(timerId.timer_, timerId.sequence_);
ActiveTimerSet::iterator it = activeTimers_.find(timer);
if (it != activeTimers_.end())//要取消的在当前激活的Timer集合中
{
size_t n = timers_.erase(Entry(it->first->expiration(), it->first));//在timers_中取消
assert(n == 1); (void)n;
delete it->first; // FIXME: no delete please
activeTimers_.erase(it);//在activeTimers_中取消
}
else if (callingExpiredTimers_)//如果正在执行超时定时器的回调函数,则加入到cancelingTimers集合中
{
cancelingTimers_.insert(timer);
}
assert(timers_.size() == activeTimers_.size());
}
void TimerQueue::handleRead()//处理timerfd读事件
{
loop_->assertInLoopThread();
Timestamp now(Timestamp::now());
readTimerfd(timerfd_, now);//读timerfd
std::vector<Entry> expired = getExpired(now);//找到超时定时器
callingExpiredTimers_ = true;
cancelingTimers_.clear();
// safe to callback outside critical section
for (std::vector<Entry>::iterator it = expired.begin();
it != expired.end(); ++it)
{
it->second->run();//调用timer的回调函数
}
callingExpiredTimers_ = false;
reset(expired, now);//把重复的定时器重新加入到定时器中
}
std::vector<TimerQueue::Entry> TimerQueue::getExpired(Timestamp now)
{
assert(timers_.size() == activeTimers_.size());
std::vector<Entry> expired;
Entry sentry(now, reinterpret_cast<Timer*>(UINTPTR_MAX));
TimerList::iterator end = timers_.lower_bound(sentry);//返回第一个大于等于now的迭代器,小于now的都已经超时
assert(end == timers_.end() || now < end->first);
std::copy(timers_.begin(), end, back_inserter(expired));//[begin end)之间的元素追加到expired末尾
timers_.erase(timers_.begin(), end);//删除超时定时器
for (std::vector<Entry>::iterator it = expired.begin();
it != expired.end(); ++it)
{
ActiveTimer timer(it->second, it->second->sequence());
size_t n = activeTimers_.erase(timer);//删除超时定时器
assert(n == 1); (void)n;
}
assert(timers_.size() == activeTimers_.size());
return expired;
}
void TimerQueue::reset(const std::vector<Entry>& expired, Timestamp now)
{
Timestamp nextExpire;
for (std::vector<Entry>::const_iterator it = expired.begin();
it != expired.end(); ++it)
{
ActiveTimer timer(it->second, it->second->sequence());
if (it->second->repeat()//重复
&& cancelingTimers_.find(timer) == cancelingTimers_.end())//且不在cancelingTimers_集合中
{
it->second->restart(now);//重启定时器
insert(it->second);//重新插入倒timers_和activeTimers
}
else
{
// FIXME move to a free list
delete it->second; // FIXME: no delete please
}
}
if (!timers_.empty())
{
nextExpire = timers_.begin()->second->expiration();
}
if (nextExpire.valid())
{
resetTimerfd(timerfd_, nextExpire);
}
}
bool TimerQueue::insert(Timer* timer)//插入一个timer
{
loop_->assertInLoopThread();
assert(timers_.size() == activeTimers_.size());
bool earliestChanged = false;
Timestamp when = timer->expiration();
TimerList::iterator it = timers_.begin();
if (it == timers_.end() || when < it->first)//当前插入的定时器是否时最早到时的
{
earliestChanged = true;
}
{
std::pair<TimerList::iterator, bool> result
= timers_.insert(Entry(when, timer));
assert(result.second); (void)result;//为什么(void)result
}
{
std::pair<ActiveTimerSet::iterator, bool> result
= activeTimers_.insert(ActiveTimer(timer, timer->sequence()));
assert(result.second); (void)result;
}
assert(timers_.size() == activeTimers_.size());
return earliestChanged;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
muduo::TimerId、Timer、TimerQueue分析
原文地址:http://blog.csdn.net/kangroger/article/details/47324823