码迷,mamicode.com
首页 > 其他好文 > 详细

scikit-learn(工程中用的相对较多的模型介绍):1.14. Semi-Supervised

时间:2015-08-07 09:39:40      阅读:258      评论:0      收藏:0      [点我收藏+]

标签:scikit-learn   工程应用   semi-supervised   半监督学习   机器学习   

参考:http://scikit-learn.org/stable/modules/label_propagation.html



The semi-supervised estimators insklearn.semi_supervised are able to make use of this additional unlabeled data to better capture the shape of the underlying data distribution and generalize better to new samples. These algorithms can perform well when we have a very small amount of labeled points and a large amount of unlabeled points.


Unlabeled entries in yIt is important to assign an identifier to unlabeled points along with the labeled data when training the model with the fit method. The identifier that this implementation uses is the integer value 技术分享.


有时间翻译:

版权声明:本文为博主原创文章,未经博主允许不得转载。

scikit-learn(工程中用的相对较多的模型介绍):1.14. Semi-Supervised

标签:scikit-learn   工程应用   semi-supervised   半监督学习   机器学习   

原文地址:http://blog.csdn.net/mmc2015/article/details/47333839

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!