标签:
A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.
Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.
Input Specification:
Each input file contains one test case. Each case consists of two positive numbers N and K, where N (<= 1010) is the initial numer and K (<= 100) is the maximum number of steps. The numbers are separated by a space.
Output Specification:
For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.
Sample Input 1:67 3Sample Output 1:
484 2Sample Input 2:
69 3Sample Output 2:
1353 3
以下的代码由于采用了一个自己编写的High-Precision的类,并且在类中重载了各种运算符,因而显得代码比较冗长
1 #include <string> 2 #include <iostream> 3 #include <sstream> 4 5 using namespace std; 6 7 class HPrecision 8 { 9 private: 10 std::string num; 11 public: 12 HPrecision(){} 13 ~HPrecision(){} 14 HPrecision(std::string num){ this->num = num; } 15 HPrecision(long long integer); 16 HPrecision& operator=(const HPrecision &hp){ this->num = hp.num; return *this; } 17 friend std::istream& operator>>(std::istream &is, HPrecision &in); 18 friend std::ostream& operator<<(std::ostream &os, const HPrecision &out); 19 friend HPrecision operator+(const HPrecision &lhs, const HPrecision &rhs); 20 friend HPrecision operator-(const HPrecision &lhs, const HPrecision &rhs); 21 friend HPrecision operator*(const HPrecision &lhs, const HPrecision &rhs); 22 friend HPrecision operator/(const HPrecision &lhs, const HPrecision &rhs); 23 HPrecision& operator+=(const HPrecision &hp){ *this = *this + hp; return *this; } 24 HPrecision& operator-=(const HPrecision &hp){ *this = *this - hp; return *this; } 25 friend bool operator<(const HPrecision &lhs, const HPrecision &rhs); 26 friend bool operator<=(const HPrecision &lhs, const HPrecision &rhs); 27 friend bool operator>(const HPrecision &lhs, const HPrecision &rhs); 28 friend bool operator>=(const HPrecision &lhs, const HPrecision &rhs); 29 friend bool operator==(const HPrecision &lhs, const HPrecision &rhs); 30 friend bool operator!=(const HPrecision &lhs, const HPrecision &rhs); 31 HPrecision reverse(); 32 }; 33 34 HPrecision::HPrecision(long long integer) 35 { 36 std::stringstream ss; 37 ss << integer; 38 this->num = ss.str(); 39 } 40 41 std::istream& operator>>(std::istream &is, HPrecision &in) 42 { 43 is >> in.num; 44 return is; 45 } 46 47 std::ostream& operator<<(std::ostream &os, const HPrecision &out) 48 { 49 os << out.num; 50 return os; 51 } 52 53 HPrecision operator+(const HPrecision &lhs, const HPrecision &rhs) 54 { 55 HPrecision sum; 56 HPrecision op1, op2; 57 op1 = lhs; 58 op2 = rhs; 59 60 if (op1.num[0] == ‘-‘&&op2.num[0] == ‘-‘) //all negative 61 { 62 op1.num.erase(op1.num.begin()); 63 op2.num.erase(op2.num.begin()); 64 sum = op1 + op2; 65 sum.num = std::string("-") + sum.num; 66 return sum; 67 } 68 else if (op1.num[0] == ‘-‘) //left operand is negative 69 { 70 op1.num.erase(op1.num.begin()); 71 return op2 - op1; 72 } 73 else if (op2.num[0] == ‘-‘) //right operand is negative 74 { 75 op2.num.erase(op2.num.begin()); 76 return op1 - op2; 77 } 78 79 int i = op1.num.size() - 1; 80 int j = op2.num.size() - 1; 81 int carry = 0; 82 while (i >= 0 || j >= 0) 83 { 84 if (i >= 0 && j >= 0) 85 { 86 int sumdigit; 87 sumdigit = (op1.num[i] - ‘0‘) + (op2.num[j] - ‘0‘) + carry; 88 sum.num = std::string(1, sumdigit % 10 + ‘0‘) + sum.num; 89 carry = sumdigit / 10; 90 i--; 91 j--; 92 } 93 else if (i >= 0) 94 { 95 int sumdigit; 96 sumdigit = (op1.num[i] - ‘0‘) + carry; 97 sum.num = std::string(1, sumdigit % 10 + ‘0‘) + sum.num; 98 carry = sumdigit / 10; 99 i--; 100 } 101 else 102 { 103 int sumdigit; 104 sumdigit = (op2.num[j] - ‘0‘) + carry; 105 sum.num = std::string(1, sumdigit % 10 + ‘0‘) + sum.num; 106 carry = sumdigit / 10; 107 j--; 108 } 109 } 110 if (carry != 0) 111 sum.num = std::string("1") + sum.num; 112 113 return sum; 114 } 115 116 HPrecision operator-(const HPrecision &lhs, const HPrecision &rhs) 117 { 118 HPrecision diff; 119 HPrecision op1, op2; 120 op1 = lhs; 121 op2 = rhs; 122 123 if (op1.num[0] == ‘-‘&&op2.num[0] == ‘-‘) //all negative 124 { 125 op1.num.erase(op1.num.begin()); 126 op2.num.erase(op2.num.begin()); 127 return op2 - op1; 128 } 129 else if (op1.num[0] == ‘-‘) //left operand is negative 130 { 131 op1.num.erase(op1.num.begin()); 132 diff = op2 + op1; 133 diff.num = std::string("-") + diff.num; 134 return diff; 135 } 136 else if (op2.num[0] == ‘-‘) //right operand is negative 137 { 138 op2.num.erase(op2.num.begin()); 139 return op1 + op2; 140 } 141 if (op1.num.size() < op2.num.size() || (op1.num.size() == op2.num.size() && op1.num < op2.num)) //small - big 142 { 143 diff = op2 - op1; 144 diff.num = std::string("-") + diff.num; 145 return diff; 146 } 147 if (op1.num == op2.num) 148 return HPrecision(std::string("0")); 149 150 while (op2.num.size() < op1.num.size()) 151 op2.num = std::string("0") + op2.num; 152 int borrow = 0; 153 int i = op1.num.size() - 1; 154 while (i >= 0) 155 { 156 int diffdigit; 157 diffdigit = op1.num[i] - op2.num[i] - borrow; 158 if (diffdigit < 0) 159 { 160 diffdigit += 10; 161 borrow = 1; 162 } 163 else 164 borrow = 0; 165 diff.num = std::string(1, diffdigit + ‘0‘) + diff.num; 166 i--; 167 } 168 std::string::iterator it = diff.num.begin(); 169 while (*it == ‘0‘) 170 diff.num.erase(it); 171 172 return diff; 173 } 174 175 HPrecision operator*(const HPrecision &lhs, const HPrecision &rhs) 176 { 177 HPrecision mul = 0; 178 HPrecision op1, op2; 179 op1 = lhs; op2 = rhs; 180 if (op1.num[0] == ‘-‘&&op2.num[0] == ‘-‘) //all negative 181 { 182 op1.num.erase(op1.num.begin()); 183 op2.num.erase(op2.num.begin()); 184 return op1 * op2; 185 } 186 else if (op1.num[0] == ‘-‘) //left operand is negative 187 { 188 op1.num.erase(op1.num.begin()); 189 mul = op1 * op2; 190 mul.num = std::string("-") + mul.num; 191 return mul; 192 } 193 else if (op2.num[0] == ‘-‘) //right operand is negative 194 { 195 op2.num.erase(op2.num.begin()); 196 mul = op1 * op2; 197 mul.num = std::string("-") + mul.num; 198 return mul; 199 } 200 int i = 0; 201 while (i < op2.num.size()) 202 { 203 204 HPrecision tmp = 0; 205 for (int j = ‘0‘; j < op2.num[i]; j++) 206 tmp += op1; 207 208 } 209 } 210 211 bool operator<(const HPrecision &lhs, const HPrecision &rhs) 212 { 213 return lhs.num < rhs.num; 214 } 215 bool operator<=(const HPrecision &lhs, const HPrecision &rhs) 216 { 217 return lhs.num <= rhs.num; 218 } 219 bool operator>(const HPrecision &lhs, const HPrecision &rhs) 220 { 221 return lhs.num > rhs.num; 222 } 223 bool operator>=(const HPrecision &lhs, const HPrecision &rhs) 224 { 225 return lhs.num >= rhs.num; 226 } 227 bool operator==(const HPrecision &lhs, const HPrecision &rhs) 228 { 229 return lhs.num == rhs.num; 230 } 231 bool operator!=(const HPrecision &lhs, const HPrecision &rhs) 232 { 233 return lhs.num != rhs.num; 234 } 235 236 HPrecision HPrecision::reverse() 237 { 238 std::string num = this->num; 239 240 std::string reversenum; 241 reversenum.assign(num.rbegin(), num.rend()); 242 243 return HPrecision(reversenum); 244 } 245 bool Is_Palindromic(HPrecision num) 246 { 247 HPrecision reversenum = num.reverse(); 248 if (reversenum == num) 249 return true; 250 return false; 251 } 252 int main() 253 { 254 HPrecision num; 255 int steps; 256 cin >> num >> steps; 257 258 for (int i = 0; i < steps; i++) 259 { 260 if (Is_Palindromic(num)) 261 { 262 cout << num << "\n" << i; 263 return 0; 264 } 265 num = num.reverse() + num; 266 } 267 cout << num << "\n" << steps; 268 }
PAT 1024. Palindromic Number (25)
标签:
原文地址:http://www.cnblogs.com/jackwang822/p/4710237.html