标签:
这题很有意思哦~
以最小的非零系数为模数,记为 M
如果存在 W 使方程有解,W 与 W’ 在模意义下同余并且 W < W’,那么 W’也使方程有解。
设
分别统计1~Wmax,1~Wmin-1中满足 W mod M=i 的W的个数
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <vector>
#include <utility>
#include <stack>
#include <queue>
#include <iostream>
#include <algorithm>
template<class Num>void read(Num &x)
{
char c; int flag = 1;
while((c = getchar()) < ‘0‘ || c > ‘9‘)
if(c == ‘-‘) flag *= -1;
x = c - ‘0‘;
while((c = getchar()) >= ‘0‘ && c <= ‘9‘)
x = (x<<3) + (x<<1) + (c-‘0‘);
x *= flag;
return;
}
template<class Num>void write(Num x)
{
if(x < 0) putchar(‘-‘), x = -x;
static char s[20];int sl = 0;
while(x) s[sl++] = x%10 + ‘0‘,x /= 10;
if(!sl) {putchar(‘0‘);return;}
while(sl) putchar(s[--sl]);
}
typedef std::pair<long long,int> heapnode;
#define RootMin std::vector<heapnode>, std::greater<heapnode>
const int maxn = 15, size = 5e5+5, Nya = -1;
int n, a[maxn];
long long Bmin, Bmax, ans;
std::priority_queue<heapnode, RootMin> heap;
long long dist[size];
bool hash[size];
void Dijstra(int st)
{
int p; long long d;
for(int i = 1; i < a[n]; i++) dist[i] = Nya;
dist[0] = 0, heap.push(std::make_pair(0, 0));
while(!heap.empty())
{
int t = heap.top().second;
heap.pop();
if(hash[t]) continue;
hash[t] = true;
for(int i = 1; i < n; i++)
{
p = (t + a[i])%a[n], d = dist[t] + a[i];
if(!hash[p] && (dist[p] == Nya || d < dist[p]))
heap.push(std::make_pair((dist[p] = d), p));
}
}
return;
}
long long Count(long long s,int t)
{
return std::max(0LL, s/a[n] + ((t <= s%a[n])?1:0) - dist[t]/a[n]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("2118.in","r",stdin);
freopen("2118.out","w",stdout);
#endif
read(n), read(Bmin), read(Bmax);
for(int i = 1; i <= n; i++) read(a[i]);
std::sort(a + 1, a + n + 1);
if(!a[n]) ans = 0;
else
{
Dijstra(0);
for(int i = 0; i < a[n]; i++)
if(dist[i] != Nya)
{
ans += Count(Bmax, i);
ans -= Count(Bmin - 1, i);
}
}
write(ans);
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
#endif
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/cyxhahaha/article/details/47342343