码迷,mamicode.com
首页 > 其他好文 > 详细

数论 - 线性筛法与积性函数

时间:2015-08-08 00:06:15      阅读:144      评论:0      收藏:0      [点我收藏+]

标签:acm   数论   筛法   

首先以求1000000以内的素数为例来探讨筛法

Eratosthenes筛法(埃拉托斯特尼筛法)

时间复杂度:O(N*loglogN)
空间复杂度:O(N)

代码:

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;

const int maxn = 1000005;

bool vis[maxn];
int prime[maxn];
int tot;

void init() {
    tot = 0;
    memset(vis, false, sizeof(vis));
    for(int i = 2; i < maxn; i ++) {
        if(!vis[i]) {
            prime[tot ++] = i;
            for(int j = i * 2; j < maxn; j += i) {
                vis[j] = true;
            }
        }
    }
}

int main() {

    init();

    for(int i = 0; i < 100; i ++) {
        cout << prime[i] << " ";
    }

    return 0;
}



Euler筛法(欧拉筛法)

每个合数只会被它最小的质因数筛去,因此时间复杂度为O(N)。

此种为线性筛法

代码:

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;

const int maxn = 1000005;

bool vis[maxn];
int prime[maxn];
int tot;

void init() {
    tot = 0;
    memset(vis, false, sizeof(vis));
    for(int i = 2; i < maxn; i ++) {
        if(!vis[i]) prime[tot ++] = i;
        for(int j = 0; j < tot; j ++) {
            if(i * prime[j] > maxn) break;
            vis[i * prime[j]] = true;
            if(i % prime[j] == 0) break;
        }
    }
}

int main() {

    init();

    for(int i = 0; i < 100; i ++) {
        cout << prime[i] << " ";
    }

    return 0;
}



线性筛法求欧拉函数

代码:

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;

const int maxn = 1000005;

bool vis[maxn];
int prime[maxn];
int fai[maxn];
int tot;

void init() {
    memset(vis, false, sizeof(vis));
    fai[1] = 1;
    tot = 0;
    for(int i = 2; i < maxn; i ++) {
        if(!vis[i]) {
            prime[tot ++] = i;
            fai[i] = i - 1;
        }
        for(int j = 0; j < tot; j ++) {
            if(i * prime[j] >= maxn) break;
            vis[i * prime[j]] = true;
            if(i % prime[j] == 0) {
                fai[i * prime[j]] = fai[i] * prime[j];
                break;
            }
            else {
                fai[i * prime[j]] = fai[i] * (prime[j] - 1);
            }
        }
    }
}

int main() {

    init();

    for(int i = 1; i < 100; i ++) {
        cout << fai[i] << " ";
    }

    return 0;
}



线性筛法求莫比乌斯函数

代码:

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;

const int maxn = 1000005;

bool vis[maxn];
int prime[maxn];
int mu[maxn];//莫比乌斯函数
int tot;

void init() {
    memset(vis, false, sizeof(vis));
    mu[1] = 1;
    tot = 0;
    for(int i = 2; i < maxn; i ++) {
        if(!vis[i]) {
            prime[tot ++] = i;
            mu[i] = -1;
        }
        for(int j = 0; j < tot; j ++) {
            if(i * prime[j] >= maxn) break;
            vis[i * prime[j]] = true;
            if(i % prime[j] == 0) {
                mu[i * prime[j]] = 0;
                break;
            }
            else {
                mu[i * prime[j]] = -mu[i];
            }
        }
    }
}

int main() {

    init();

    for(int i = 1; i < 100; i ++) {
        cout << mu[i] << " ";
    }

    return 0;
}



版权声明:本文为博主原创文章,未经博主允许不得转载。

数论 - 线性筛法与积性函数

标签:acm   数论   筛法   

原文地址:http://blog.csdn.net/u014355480/article/details/47345561

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!