标签:
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10931 | Accepted: 7770 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number ?1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
就是矩阵快速幂,裸题。
#include <stdio.h> #include <math.h> #include <vector> #include <queue> #include <string> #include <string.h> #include <stdlib.h> #include <iostream> #include <algorithm> #define Mod 10000 using namespace std; int res[5][5]; int mat[5][5]; void Matmul(int x[5][5],int y[5][5]) { int t[5][5]={0}; for(int i=0;i<2;i++){ for(int k=0;k<2;k++){ if(x[i][k]){ for(int j=0;j<2;j++) t[i][j]=(t[i][j]+(x[i][k]*y[k][j]))%Mod; } } } for(int i=0;i<2;i++){ for(int j=0;j<2;j++){ x[i][j]=t[i][j]; } } } void Matrix(int x[5][5],int n) { for(int i=0;i<2;i++){ for(int j=0;j<2;j++){ res[i][j]=(i==j); } } while(n){ if(n&1)Matmul(res,x); Matmul(x,x); n>>=1; } } int main() { int n; while(scanf("%d",&n)!=EOF){ mat[0][0]=mat[0][1]=mat[1][0]=1; mat[1][1]=0; if(n==-1)break; if(n==0){ printf("0\n"); continue; } Matrix(mat,n); printf("%d\n",res[0][1]); } return 0; }
版权声明:本文为博主原创文章,转载请注明出处。
标签:
原文地址:http://blog.csdn.net/ydd97/article/details/47355373