码迷,mamicode.com
首页 > 其他好文 > 详细

Trie树讲解

时间:2015-08-08 12:10:46      阅读:273      评论:0      收藏:0      [点我收藏+]

标签:

Trie树简介:又称字典树、前缀树、单词查找树或键树,是一种用于快速检索的树形结构,是一种哈希树的变种

用途:

1、字符串检索:实现将一些字符串的有关信息保存到trie树中,查找另外一些字符串是否出现过或者出现的频率

2、前缀匹配:匹配前缀

3、排序:tire树是一颗多叉树,只需先序遍历整棵树,输出相应的字符串便是按字典序排序的结果

4、作为其他数据结构和算法的辅助结构:ac自动机、后缀数组

特点:

1、时间:建树时间复杂度 O(n*len),如果要查找长度为len的字符串是否存在,时间复杂度O(len),而一般的逐个匹配为O(len*n),n为字符串的个数。效率相当高,查找效率比哈希表高。

2、空间:空间消耗比较大,O(26^n)级别,主要是每个节点都有一个长度为[26](‘a‘~‘z‘)的指针数组(ps:数字的是长度为[10](0~9)的指针数组)

如图所示是一棵tire树

技术分享

观察发现tire有以下三个特性

一、根节点不包含字符,出根节点外的每个一节点都包含一个字符

二、从根节点到某一个节点,路径上所经过的字符链接起来就是该节点对应的字符串

三、每个单词的公共前缀作为一个字符节点保存

代码:hdu1251

#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <queue>
#define MAXN 500010
using namespace std;
struct Trie{
    int next[MAXN][26],ans[MAXN];
    int root,L;
    void init(){
        L=0;
        root=newnode();
    }
    int newnode(){
        for(int i=0;i<26;i++)
            next[L][i]=-1;
        ans[L++]=0;
        return L-1;
    }
    void insert(char buf[]){
        int len=strlen(buf);
        int now=root;
        for(int i=0;i<len;i++){
            if(next[now][buf[i]-'a']==-1){
                next[now][buf[i]-'a']=newnode();
            }
            now=next[now][buf[i]-'a'];
            ans[now]++;
        }
    }
    int query(char buf[]){
        int len = strlen(buf);
        int now=root;
        for(int i=0;i<len;i++){
            now=next[now][buf[i]-'a'];
            if(now==-1)
                return 0;
        }
        return ans[now];
    }
};
Trie tr;
int main()
{
    char st[11];
    tr.init();
    while(gets(st)&&strlen(st)){
        tr.insert(st);
    }
    while(gets(st)&&strlen(st)){
        printf("%d\n",tr.query(st));
    }
    return 0;
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

Trie树讲解

标签:

原文地址:http://blog.csdn.net/mengxingyuanlove/article/details/47355121

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!