标签:hunnu
题意:
一个正多边形分割成三角形有多少种不同的分法
思路:
不难看出是卡特兰数,实在是数学乏力,超时到身心疲惫,用分解质因子的方法需要980+ms,太不理想了,在别人那里看到了一个不错的代码,只要31ms,于是引用来做模板
地址:http://blog.csdn.net/kongming_acm/article/details/6361176
#include <iostream> #include <stdio.h> #include <string.h> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <math.h> #include <bitset> #include <algorithm> #include <climits> using namespace std; #define ls 2*i #define rs 2*i+1 #define UP(i,x,y) for(i=x;i<=y;i++) #define DOWN(i,x,y) for(i=x;i>=y;i--) #define MEM(a,x) memset(a,x,sizeof(a)) #define W(a) while(a) #define gcd(a,b) __gcd(a,b) #define LL long long #define N 1000005 #define INF 0x3f3f3f3f #define EXP 1e-8 #define rank rank1 const int mod = 1000000007; int Pow(int x, int b) { int ret = 1; for(int s = x; b; b >>= 1) { if(b & 1) ret *= s; s *= s; } return ret; } int PowMod(int x, int b, int p) { int ret = 1 % p; for(int s = x % p; b; b >>= 1) { if(b & 1) { ret *= s; ret %= p; } s *= s; s %= p; } return ret; } pair<int, int> ExGcd(int a, int b) { if(a == 0) return make_pair(0, 1); pair<int, int> s = ExGcd(b % a, a); return make_pair(s.second - b / a * s.first, s.first); } int Inv(int a, int m) // ax == 1 mod m { // assert gcd(a, m) == 1 pair<int, int> s = ExGcd(a, m); // s.first * a + s.second * m == 1 return s.first < 0 ? s.first + m : s.first; } pair<int, int> FacMod(int n, int p, int k) { // assert p > 1, k > 0 int pk = Pow(p, k); int S[pk]; S[0] = 1 % pk; for(int i = 1; i < pk; ++i) { S[i] = S[i - 1]; if(i % p != 0) { S[i] *= i; S[i] %= pk; } } int ret = 1 % pk, et = 0, ep = 0; // S[pk - 1]^et, p^ep while(n) { et += n / pk; ret *= S[n % pk]; ret %= pk; ep += n / p; n /= p; } ret *= PowMod(S[pk - 1], et, pk); ret %= pk; return make_pair(ret, ep); } int CRT(int x1, int m1, int x2, int m2) // Linear Congruence Equation { // assert gcd(m1, m2) == 1 // let x == x1 * k1 + x2 * k2 mod m1*m2 // k1 == 1 mod m1, k1 == 0 mod m2 // k2 == 0 mod m1, k2 == 1 mod m2 pair<int, int> s = ExGcd(m1, m2); // s.first * m1 + s.second * m2 == 1 int k1 = s.second * m2, k2 = s.first * m1; int t = (x1 * k1 + x2 * k2) % (m1 * m2); return t < 0 ? t + m1 * m2 : t; } vector<pair<int, int> > Factorize(int n) { vector<pair<int, int> > ret; for(int x = 2; x * x <= n; ++x) { if(n % x == 0) { int c = 0; while(n % x == 0) { ++c; n /= x; } ret.push_back(make_pair(x, c) ); } } if(n > 1) ret.push_back(make_pair(n, 1) ); return ret; } int Calc(int n, int p) { vector<pair<int, int> > factors = Factorize(p); int x = 0, m = 1; for(int i = 0; i < factors.size(); ++i) { // C(n, k) mod p[i]^k[i] pair<int, int> f2n = FacMod(n * 2, factors[i].first, factors[i].second); pair<int, int> fn = FacMod(n, factors[i].first, factors[i].second); pair<int, int> fn1 = FacMod(n + 1, factors[i].first, factors[i].second); int pk = Pow(factors[i].first, factors[i].second); int t = f2n.first * Inv(fn.first, pk) % pk; t = t * Inv(fn1.first, pk) % pk; t = t * PowMod(factors[i].first, f2n.second - fn.second - fn1.second, pk) % pk; x = CRT(x, m, t, pk); m *= pk; } return x; } int main() { int n, p; while(scanf("%d%d", &n, &p) != -1) printf("%d\n", Calc(n-2, p) ); return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
hunnu11562:The Triangle Division of the Convex Polygon(第n个卡特兰数取模)
标签:hunnu
原文地址:http://blog.csdn.net/libin56842/article/details/47362077