标签:
Given an n*n matrix A, whose entries Ai,j are integer numbers ( 1 <= i <= n, 1 <= j <= n ). An operation FIND the minimun number in a given ssub-matrix.
Input
The first line of the input contains a single integer T , the number of test cases.
For each test case, the first line contains one integer n (1 <= n <= 300), which is the sizes of the matrix, respectively. The next n lines with n integers each gives the elements of the matrix.
The next line contains a single integer N (1 <= N <= 1,000,000), the number of queries. The next N lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= n, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question.
Output
For each test case, print N lines with one number on each line, the required minimum integer in the sub-matrix.
Sample Input
1
2
2 -1
2 3
2
1 1 2 2
1 1 2 1
Sample Output
-1
2
Source: ZOJ Monthly, June 2007
帮学妹找了一晚上的bug,,,各种调试,,各种报错,,感觉自己水爆了,,赶紧水道高级点的水题压压惊~~
ac代码
#include<stdio.h> #include<string.h> #include<math.h> #define max(a,b) (a>b?a:b) #define min(a,b) (a>b?b:a) int map[301][301]; int minv[301][301][9][9]; int mm[306]; int n,m; void initrmq() { int i,j; for(i=1;i<=n;i++) { for(j=1;j<=n;j++) { minv[i][j][0][0]=map[i][j]; } } int ii,jj; for(ii=0;ii<=mm[n];ii++) for(jj=0;jj<=mm[n];jj++) { if(ii+jj) { for(i=1;i+(1<<ii)-1<=n;i++) for(j=1;j+(1<<jj)-1<=n;j++) { if(ii) minv[i][j][ii][jj]=min(minv[i][j][ii-1][jj],minv[i+(1<<(ii-1))][j][ii-1][jj]); else minv[i][j][ii][jj]=min(minv[i][j][ii][jj-1],minv[i][j+(1<<(jj-1))][ii][jj-1]); } } } } int q_min(int x1,int y1,int x2,int y2) { int k1=mm[x2-x1+1]; int k2=mm[y2-y1+1]; x2=x2-(1<<k1)+1; y2=y2-(1<<k2)+1; return min(min(minv[x1][y1][k1][k2],minv[x1][y2][k1][k2]),min(minv[x2][y1][k1][k2],minv[x2][y2][k1][k2])); } void init() { mm[0]=-1; int i; for(i = 1;i <= 305;i++) mm[i] = ((i&(i-1))==0)?mm[i-1]+1:mm[i-1]; } int main() { int t; init(); scanf("%d",&t); while(t--) { //int n,m; scanf("%d",&n); int i,j; for(i=1;i<=n;i++) { for(j=1;j<=n;j++) scanf("%d",&map[i][j]); } initrmq(); scanf("%d",&m); while(m--) { int r1,c1,r2,c2; scanf("%d%d%d%d",&r1,&c1,&r2,&c2); printf("%d\n",q_min(r1,c1,r2,c2)); } } }
版权声明:本文为博主原创文章,未经博主允许不得转载。
ZOJ 题目2859 Matrix Searching(二维RMQ)
标签:
原文地址:http://blog.csdn.net/yu_ch_sh/article/details/47366265