Book Club |
Time Limit: 5000ms, Special Time Limit:12500ms, Memory Limit:65536KB |
Total submit users: 34, Accepted users: 16 |
Problem 13377 : No special judgement |
Problem description |
Porto’s book club is buzzing with excitement for the annual book exchange event! Every year, members bring their favorite book and try to find another book they like that is owned by someone willing to trade with them. |
Input |
The first line has two integers: N, the number of people, and M, the total number of “declarations of interest”. Each of the following M lines has two integers, A and B, indicating that member A likes the book that member B brought (0<=A,B < N). Numbers
A and B will never be the same (a member never likes the book he brought). 2<=N<=10 000 |
Output |
You should output YES if we can find a new book for every club member and NO if that is not possible. |
Sample Input |
9 9 0 1 1 2 2 0 3 4 4 3 5 6 6 7 7 8 8 5 |
Sample Output |
YES |
Problem Source |
HNU Contest 题意:判断所有的点是否都在单个环上。 /* 最大流:SAP算法,与ISAP的差别就是不用预处理 */ #include<stdio.h> #include<string.h> #include<queue> #include<algorithm> using namespace std; #define captype int const int MAXN = 100010; //点的总数 const int MAXM = 400010; //边的总数 const int INF = 1<<30; struct EDG{ int to,next; captype cap,flow; } edg[MAXM]; int eid,head[MAXN]; int gap[MAXN]; //每种距离(或可认为是高度)点的个数 int dis[MAXN]; //每个点到终点eNode 的最短距离 int cur[MAXN]; //cur[u] 表示从u点出发可流经 cur[u] 号边 int pre[MAXN]; void init(){ eid=0; memset(head,-1,sizeof(head)); } //有向边 三个参数,无向边4个参数 void addEdg(int u,int v,captype c,captype rc=0){ edg[eid].to=v; edg[eid].next=head[u]; edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++; edg[eid].to=u; edg[eid].next=head[v]; edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++; } captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意 memset(gap,0,sizeof(gap)); memset(dis,0,sizeof(dis)); memcpy(cur,head,sizeof(head)); pre[sNode] = -1; gap[0]=n; captype ans=0; //最大流 int u=sNode; while(dis[sNode]<n){ //判断从sNode点有没有流向下一个相邻的点 if(u==eNode){ //找到一条可增流的路 captype Min=INF ; int inser; for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]) //从这条可增流的路找到最多可增的流量Min if(Min>edg[i].cap-edg[i].flow){ Min=edg[i].cap-edg[i].flow; inser=i; } for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){ edg[i].flow+=Min; edg[i^1].flow-=Min; //可回流的边的流量 } ans+=Min; u=edg[inser^1].to; continue; } bool flag = false; //判断能否从u点出发可往相邻点流 int v; for(int i=cur[u]; i!=-1; i=edg[i].next){ v=edg[i].to; if(edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){ flag=true; cur[u]=pre[v]=i; break; } } if(flag){ u=v; continue; } //如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1 int Mind= n; for(int i=head[u]; i!=-1; i=edg[i].next) if(edg[i].cap-edg[i].flow>0 && Mind>dis[edg[i].to]){ Mind=dis[edg[i].to]; cur[u]=i; } gap[dis[u]]--; if(gap[dis[u]]==0) return ans; //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径 //因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流 dis[u]=Mind+1;//如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1 gap[dis[u]]++; if(u!=sNode) u=edg[pre[u]^1].to; //退一条边 } return ans; } int main() { int n,m , u , v; while(scanf("%d%d",&n,&m)>0) { init(); while(m--){ scanf("%d%d",&u,&v); addEdg(u , v+n , 1); } int vs = 2*n , vt=2*n+1 , ans=n; for(int i=0; i<n; i++){ addEdg(vs , i , 1); addEdg(i+n , vt , 1); } ans -= maxFlow_sap(vs , vt , vt+1); printf("%s\n",ans==0? "YES" : "NO"); } } |
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/u010372095/article/details/47378367