码迷,mamicode.com
首页 > 其他好文 > 详细

HNU 13377 Book Club (最大流 判环)

时间:2015-08-09 18:47:09      阅读:141      评论:0      收藏:0      [点我收藏+]

标签:算法   图论   最大流   网络流   

Book Club
Time Limit: 5000ms, Special Time Limit:12500ms, Memory Limit:65536KB
Total submit users: 34, Accepted users: 16
Problem 13377 : No special judgement
Problem description

Porto’s book club is buzzing with excitement for the annual book exchange event! Every year, members bring their favorite book and try to find another book they like that is owned by someone willing to trade with them.
I have been to this book exchange before, and I definitely do not want to miss it this year, but I feel that the trading should be improved. In the past, pairs of members interested in each other’s books would simply trade: imagine that person A brought a book that person B liked and vice-versa, then A and B would exchange their books.
I then realized that many members were left with the same book they walked-in with... If instead of looking for pairs I looked for triplets, I could find more valid exchanges! Imagine that member A only likes member B’s book, while B only likes C’s book and C likes A’s book. These 3 people could trade their books in a cycle and everyone would be happy!
But why stop at triplets? Cycles could be bigger and bigger! Could you help me find if it is possible for everyone to go out with a new book? Be careful, because members will not give their book without receiving one they like in return.
Given the members of the book club and the books they like, can we find cycles so that everyone receives a new book?


Input

The first line has two integers: N, the number of people, and M, the total number of “declarations of interest”. Each of the following M lines has two integers, A and B, indicating that member A likes the book that member B brought (0<=A,B < N). Numbers A and B will never be the same (a member never likes the book he brought). 2<=N<=10 000
1<=M<=20 000 and M<=N^2-N.


Output

You should output YES if we can find a new book for every club member and NO if that is not possible.


Sample Input
9 9
0 1
1 2
2 0
3 4
4 3
5 6
6 7
7 8
8 5
Sample Output
YES
Problem Source
HNU Contest 

题意:判断所有的点是否都在单个环上。

/*
最大流:SAP算法,与ISAP的差别就是不用预处理
*/
#include<stdio.h>
#include<string.h>
#include<queue>
#include<algorithm>
using namespace std;
#define captype int

const int MAXN = 100010;   //点的总数
const int MAXM = 400010;    //边的总数
const int INF = 1<<30;
struct EDG{
    int to,next;
    captype cap,flow;
} edg[MAXM];
int eid,head[MAXN];
int gap[MAXN];  //每种距离(或可认为是高度)点的个数
int dis[MAXN];  //每个点到终点eNode 的最短距离
int cur[MAXN];  //cur[u] 表示从u点出发可流经 cur[u] 号边
int pre[MAXN];

void init(){
    eid=0;
    memset(head,-1,sizeof(head));
}
//有向边 三个参数,无向边4个参数
void addEdg(int u,int v,captype c,captype rc=0){
    edg[eid].to=v; edg[eid].next=head[u];
    edg[eid].cap=c; edg[eid].flow=0; head[u]=eid++;

    edg[eid].to=u; edg[eid].next=head[v];
    edg[eid].cap=rc; edg[eid].flow=0; head[v]=eid++;
}
captype maxFlow_sap(int sNode,int eNode, int n){//n是包括源点和汇点的总点个数,这个一定要注意
    memset(gap,0,sizeof(gap));
    memset(dis,0,sizeof(dis));
    memcpy(cur,head,sizeof(head));
    pre[sNode] = -1;
    gap[0]=n;
    captype ans=0;  //最大流
    int u=sNode;
    while(dis[sNode]<n){   //判断从sNode点有没有流向下一个相邻的点
        if(u==eNode){   //找到一条可增流的路
            captype Min=INF ;
            int inser;
            for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to])    //从这条可增流的路找到最多可增的流量Min
            if(Min>edg[i].cap-edg[i].flow){
                Min=edg[i].cap-edg[i].flow;
                inser=i;
            }
            for(int i=pre[u]; i!=-1; i=pre[edg[i^1].to]){
                edg[i].flow+=Min;
                edg[i^1].flow-=Min;  //可回流的边的流量
            }
            ans+=Min;
            u=edg[inser^1].to;
            continue;
        }
        bool flag = false;  //判断能否从u点出发可往相邻点流
        int v;
        for(int i=cur[u]; i!=-1; i=edg[i].next){
            v=edg[i].to;
            if(edg[i].cap-edg[i].flow>0 && dis[u]==dis[v]+1){
                flag=true;
                cur[u]=pre[v]=i;
                break;
            }
        }
        if(flag){
            u=v;
            continue;
        }
        //如果上面没有找到一个可流的相邻点,则改变出发点u的距离(也可认为是高度)为相邻可流点的最小距离+1
        int Mind= n;
        for(int i=head[u]; i!=-1; i=edg[i].next)
        if(edg[i].cap-edg[i].flow>0 && Mind>dis[edg[i].to]){
            Mind=dis[edg[i].to];
            cur[u]=i;
        }
        gap[dis[u]]--;
        if(gap[dis[u]]==0) return ans;  //当dis[u]这种距离的点没有了,也就不可能从源点出发找到一条增广流路径
                                        //因为汇点到当前点的距离只有一种,那么从源点到汇点必然经过当前点,然而当前点又没能找到可流向的点,那么必然断流
        dis[u]=Mind+1;//如果找到一个可流的相邻点,则距离为相邻点距离+1,如果找不到,则为n+1
        gap[dis[u]]++;
        if(u!=sNode) u=edg[pre[u]^1].to;  //退一条边
    }
    return ans;
}
int main()
{
    int n,m , u , v;
    while(scanf("%d%d",&n,&m)>0)
    {
        init();
        while(m--){
            scanf("%d%d",&u,&v);
            addEdg(u , v+n , 1);
        }
        int vs = 2*n , vt=2*n+1 , ans=n;
        for(int i=0; i<n; i++){
            addEdg(vs , i , 1);
            addEdg(i+n , vt , 1);
        }
        ans -= maxFlow_sap(vs , vt , vt+1);
        printf("%s\n",ans==0? "YES" : "NO");
    }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

HNU 13377 Book Club (最大流 判环)

标签:算法   图论   最大流   网络流   

原文地址:http://blog.csdn.net/u010372095/article/details/47378367

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!