标签:
已有训练集$\tau$,其中$X:n\times p,y:n\times 1,\epsilon:n\times 1$
使用最小二乘得到$\hat{\beta}=\left(X^TX\right)^{-1}X^Ty$
$y=X\beta+\epsilon$
$EPE(x_0)=\int\int\left(y_0-\hat{y_0}\right)^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}\\ \ =\int\int\left[\hat{y_0}-E(\hat{y_0})+E(\hat{y_0})-y_0\right]^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}\\ \ =\int\left[\hat{y_0}-E(\hat{y_0})\right]^2p(\hat{y_0})\mathrm{d}\hat{y_0}+\int\int\left[E(\hat{y_0})-y_0\right]^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}+2\times 0\\ \ ={Var}_\tau(\hat{y_0})+\int\int\left[y_0-E(y_0)+E(y_0)-E(\hat{y_0})\right]^2p(y_0)p(\hat{y_0})\mathrm{d} y_0\mathrm{d}\hat{y_0}\\ \ ={Var}_\tau(\hat{y_0})+\int\left[y_0-E(y_0)\right]^2p(y_0)\mathrm{d} y_0+\left[E(y_0)-E(\hat{y_0}\right]^2+2\times 0\\ \ ={Var}_\tau(\hat{y_0})+\sigma^2+0^2$
${Var}_\tau(\hat{y_0})=E\left[\hat{y_0}-E(\hat{y_0})\right]^2\\ \ =E\left[x_0^T\beta+\sum_i a_i\epsilon_i-x_0^T\beta\right]^2=E\left[\sum_i\sum_j a_ia_j\epsilon_i\epsilon_j\right]\\ \ =E\left[ \sum_i a_i^2\epsilon_i^2 \right]+E\left[\sum_i\sum_{j:j\neq i} a_ia_j\epsilon_i\epsilon_j\right]\\ \ =\sum_iE(a_i^2)E(\epsilon_i^2)+\sum_i\sum_{j:j\neq i} E(a_ia_j)E(\epsilon_i)E(\epsilon_j)\\ \ =\sigma^2E(\sum_i a_i^2)+0=\sigma^2E\left(x_0^T\left(X^TX\right)^{-1}X^TX\left(X^TX\right)^{-1}x_0\right)\\ \ =\sigma^2E\left(x_0^T\left(X^TX\right)^{-1}x_0\right)$
$E\left(x_0^T\left(X^TX\right)^{-1}x_0\right)\sim E\left(x_0^T{Cov(x)}^{-1}x_0\right)/N\\ \ =E\left(trace {Cov(x)}^{-1}x_0x_0^T\right)/N\\ \ =trace {Cov(x)}^{-1}E(x_0x_0^T)/N=trace {Cov(x)}^{-1}Cov(x)/N\\ \ =trace I/N=p/N$
$EPE(x_0)=(p/N+1)\sigma^2$
标签:
原文地址:http://www.cnblogs.com/porco/p/4719741.html