码迷,mamicode.com
首页 > 其他好文 > 详细

codeforces 567 E. President and Roads 【 最短路 桥 】

时间:2015-08-11 11:45:54      阅读:178      评论:0      收藏:0      [点我收藏+]

标签:

给出一个有向图,从起点走到终点(必须走最短路),问一条边是否一定会被经过,如果不经过它,可以减小它的多少边权使得经过它(边权不能减少到0)

正反向建图,分别求出起点到每个点的最短距离,终点到每个点的最短距离(用这个可以算出减小的边权)

再将在最短路径上的边重新建图。求出里面的桥,就是必须经过的边

wa了一上午------呜呜呜呜

先wa 19  是因为求桥的时候是无向图,数组开小了一半

然后 wa 46 ,是因为dis[]数组初始化为 1 << 30 -1 ,应该再开大点 ,开成 1 << 50 -1

我写成 1 LL * 50 -----一直wa 19------

5555555555555555555--------sad-------

技术分享
  1 #include <cstdio>
  2 #include <cstring>
  3 #include <cstdlib>
  4 #include <cmath>
  5 #include <vector>
  6 #include <map>
  7 #include <set>
  8 #include <stack>
  9 #include <queue>
 10 #include <iostream>
 11 #include <algorithm>
 12 using namespace std;
 13 #define lp (p << 1)
 14 #define rp (p << 1|1)
 15 #define getmid(l,r) (l + (r - l) / 2)
 16 #define MP(a,b) make_pair(a,b)
 17 typedef long long ll;
 18 typedef unsigned long long ull;
 19 typedef pair<int,int> pii;
 20 const int INF = (1 << 30) - 1;
 21 const int maxn = 100055;
 22 
 23 int N,M;
 24 ll path;
 25 int first1[maxn],nxt1[10 * maxn],ecnt1;
 26 int first2[maxn],nxt2[10 *maxn],ecnt2;
 27 int first[maxn],nxt[10*maxn],ecnt;
 28 ll dis1[maxn],dis2[maxn];
 29 
 30 int bg[20*maxn],vis[20*maxn],low[maxn],dfn[maxn];
 31 int ans[20*maxn],res[maxn];
 32 int tot,num;
 33 
 34 struct edge{
 35     int v,u,cost;
 36     int tag;
 37     int ge;
 38     int id;
 39     friend bool operator < (edge a,edge b){
 40         return a.cost > b.cost;
 41     }
 42 };
 43 
 44 edge e1[5*maxn],e2[5*maxn],e[5*maxn];
 45 
 46 void init(){
 47     ecnt1 = ecnt2 = ecnt = 0;
 48     memset(first1,-1,sizeof(first1));
 49     memset(first2,-1,sizeof(first2));
 50     memset(first,-1,sizeof(first));
 51 }
 52 
 53 void Add_edge1(int u,int v,int c){
 54     nxt1[++ecnt1] = first1[u];
 55     e1[ecnt1].u = u;
 56     e1[ecnt1].v = v;
 57     e1[ecnt1].cost = c;
 58     e1[ecnt1].tag = 0;
 59     e1[ecnt1].ge = 0;
 60     first1[u] = ecnt1;
 61 }
 62 
 63 void Add_edge2(int u,int v,int c){
 64     nxt2[++ecnt2] = first2[u];
 65     e2[ecnt2].v = v;
 66     e2[ecnt2].cost = c;
 67     e2[ecnt2].tag = 0;
 68     e2[ecnt2].ge = 0;
 69     first2[u] = ecnt2;
 70 }
 71 
 72 void Add_edge(int u,int v,int c){
 73     nxt[ecnt] = first[u];
 74     e[ecnt].v = v;
 75     e[ecnt].u = u;
 76     e[ecnt].id = c;
 77     first[u] = ecnt++;
 78     
 79     nxt[ecnt] = first[v];
 80     e[ecnt].v = u;
 81     e[ecnt].u = v;
 82     e[ecnt].id = c;
 83     first[v] = ecnt++;
 84 }
 85 
 86 struct cmp{
 87     bool operator ()(pii a,pii b){
 88         return a.first > b.first;
 89     }
 90 };
 91 
 92 void Dijstra1(int s){
 93     priority_queue<pii,vector<pii >,cmp> PQ;
 94     dis1[s] = 0;
 95     PQ.push(MP(dis1[s],s));
 96     int cnt = 0;
 97     while(!PQ.empty()){
 98         pii x = PQ.top(); PQ.pop();
 99         if(dis1[x.second] < x.first) continue; 
100         for(int i = first1[x.second]; i != -1; i = nxt1[i]){
101             int v = e1[i].v;
102             if(dis1[v] > dis1[x.second] + e1[i].cost){
103                 dis1[v] = dis1[x.second] + e1[i].cost;
104                 PQ.push(MP(dis1[v],v));
105             }
106         }
107     }
108 }
109 
110 void Dijstra2(int s){
111     priority_queue<pii,vector<pii >,cmp> PQ;
112     dis2[s] = 0;
113     PQ.push(MP(dis2[s],s));
114     int cnt = 0;
115     while(!PQ.empty()){
116         pii x = PQ.top(); PQ.pop();
117         if(dis2[x.second] < x.first) continue; 
118         for(int i = first2[x.second]; i != -1; i = nxt2[i]){
119             int v = e2[i].v;
120             if(dis2[v] > dis2[x.second] + e2[i].cost){
121                 dis2[v] = dis2[x.second] + e2[i].cost;
122                 PQ.push(MP(dis2[v],v));
123             }
124         }
125     }
126 }
127 
128 
129 void Dfs(int p,int pre){
130     dfn[p] = low[p] = ++tot;
131     for(int i = first[p]; ~i; i = nxt[i]){
132         int v = e[i].v;
133         if(vis[i]) continue;
134         vis[i] = vis[i ^ 1] = true;
135         if(!dfn[v]){
136             Dfs(v,p);
137             low[p] = min(low[p],low[v]);
138             if(low[v] > dfn[p]) {
139                 bg[i] = bg[i ^ 1] = true;
140                 ans[e[i].id] = 1;
141             }
142         }
143         else low[p] = min(low[p],dfn[v]);
144     }
145 }
146 
147 void Tarjan(){
148     memset(dfn,0,sizeof(dfn));
149     memset(low,0,sizeof(low));
150     memset(bg,false,sizeof(bg));
151     memset(vis,false,sizeof(vis));
152     tot = 0;
153     for(int i = 1; i <= N; ++i) if( dfn[i] == 0) Dfs(i,-1);
154 }
155 
156 void solve(){
157     memset(res,-1,sizeof(res));
158     for(int i = 1;i <= M;i++){
159         int u = e1[i].u;
160         int v = e1[i].v;
161         if(ans[i] == 1) {
162             res[i] = 0;
163             continue;
164         }
165         ll need = path - dis1[u] - dis2[v];
166         if(need > 1){
167              res[i] = e1[i].cost - need + 1;
168         }
169     }
170     
171     
172     for(int i = 1;i <= M;i++){
173         if(res[i] == 0) puts("YES");
174         else if(res[i] == -1) puts("NO");
175         else printf("CAN %d\n",res[i]);
176     }
177 }
178 
179 int main(){
180     int a,b,c,s,t;
181     num = 0;
182     while(scanf("%d%d%d%d",&N,&M,&s,&t) != EOF){
183         num++;
184         init();
185         int x;
186         
187         for(int i = 1; i <= M; ++i){
188             scanf("%d%d%d",&a,&b,&c);
189             Add_edge1(a,b,c);
190             Add_edge2(b,a,c);
191         }
192         
193         for(int i = 1;i <= N;i++) dis1[i] = dis2[i] = 1ll << 50;
194         
195         Dijstra1(s);
196         Dijstra2(t);
197         path = dis1[t];
198        
199         for(int u = 1;u <= N;u++){
200             for(int i = first1[u];~i;i = nxt1[i]){
201                 int v = e1[i].v;
202                 if(dis1[u] + dis2[v] + e1[i].cost == path) {
203                     e1[i].tag = 1;
204                     e2[i].tag = 1;
205                     Add_edge(u,v,i);
206                 }
207             }
208         }
209         
210         memset(ans,0,sizeof(ans));
211         Tarjan();        
212         solve();
213     }
214     return 0;
215 }
View Code

 

codeforces 567 E. President and Roads 【 最短路 桥 】

标签:

原文地址:http://www.cnblogs.com/wuyuewoniu/p/4720474.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!