1、filter:处理与本机有关的数据包,是默认表,包含有三种链:input
output forward
2、nat表:与本机无关。主要处理源与目的地址IP和端口的转换。有三种链:prerouting
postrouting output
3、mangle表:用于高级路由信息包,如包头内有更改(如tos改变包的服务类型,ttl包的生存时间,mark特殊标记)。有两种链:prerouting
output (kernel 2.4.18后又加了两种链:input
forward)这种表很少使用。
(二)五种链
1、prerouting:进入netfilter后的数据包在进入路由判断前执行的规则。改变包。
2、Input:当经过路由判断后,要进入本机的数据包执行的规则。
3、output:由本机产生,需向外发的数据包执行的规则。
4、forward:经过路由判断后,目的地不是本机的数据包执行的规则。与nat 和
mangle表相关联很高,与本机没有关联。
5、postrouting:经过路由判断后,发送到网卡接口前。即数据包准备离开netfilter时执行的规则。
上图中,运行中的守护进程,是指本机。Input的包都会发到本机。本机处理后再经output 发出去。
(三)数据包进入netfilter后的经过图:
1、数据包进入linux服务器入接口,接口把数据包发往netfilter,数据包就此进入netfilter。
2、经prerouting处理,(如是否需要更改数据包的源IP地址等)
3、数据包到路由,路由通过路由表判断数据包的目的地。如果目的地是本机,就把数据包转给intput处理后进入本机。如果目的地不是本机,则把数据包转给forward处理。
4、数据包通过forward处理后,再转给postrouting处理,(是否有目标地址需要改变等),处理后数据包就出了netfilter,到linux服务器出接口,就出了linux服务器。
5、如果数据包进了本机后经过处理需要外发数据包,或本机自身有数据包需要外发,就把数据包发给output链进行处理后,转给postrouting处理后,出linux服务器。进入外面的花花世界。
(四)规则的执行顺序
当数据包进入netfilter,就会和里面的规则进行对比。规则是有顺序的。
先和规则1对比,如果和规则1相匹配,被规则1接受(accept),则数据将不再和后面的规则进行对比。如果不匹配,则按顺序和后面的规则进行对比,直到被接受。如果所有的规则都不匹配,则进行默认策略操作,以决定数据包的去向。所以规则的顺序很重要。
IPTABLE主要是理解上面的内容,一些详细参数可以见附件中的指南。
二、iptalbe语法及参数
iptable [-t table] command [chain] [match][-j target]
注释:iptable [-t 表名] -命令 [链接] [匹配] [-j 动作/目标]
(一) table (表)
1、filter表:默认用filter表执行所有的命令。只操作与本机有关的数据包。
2、nat表:主要用于NAT地址转换。只有数据流的第一个数据包被这个链匹配,后面的包会自动做相同的处理。
分为:DNAT(目标地址转换)、SNAT(源地址转换)、MASQUERADE
(1)DNAT操作主要用在这样一种情况,你有一个合法的IP地址,要把对防火墙的访问
重定向到其他的机子上(比如DMZ)。也就是说,我们改变的是目的地址,以使包能重路由到某台主机。
(2)SNAT 改变包的源地址,这在极大程度上可以隐藏你的本地网络或者DMZ等。内网到外网的映射。
(3)MASQUERADE
的作用和SNAT完全一样,只是计算机的负荷稍微多一点。因为对每个匹配的包,MASQUERADE都要查找可用的IP地址,而不象SNAT用的IP地址是配置好的。当然,这也有好处,就是我们可以使用通过PPP、
PPPOE、SLIP等拨号得到的地址,这些地址可是由ISP的DHCP随机分配的。
3、mangle表:用来改变数据包的高级特性,一般不用。
(二) command(命令)详解
1、 -A或者--append
//将一条或多条规则加到链尾
2、 -D或者--delete
//从链中删除该规则
3、 -R或者--replace //从所选链中替换一条规则
4、
-L或者--list
//显示链的所有规则
5、 -I或者--inset
//根据给出的规则序号,在链中插入规则。按序号的顺序插入,如是 “1”就插入链首
6、 -X或者--delete-chain
//用来删除用户自定义链中规则。必须保证链中的规则都不在使用时才能删除链。如没有指定链,将删除所有自定义链中的规则。
7、
-F或者--flush
//清空所选链中的所有规则。如指定链名,则删除对应链的所有规则。如没有指定链名,则删除所有链的所有规则。
8、
-N或者--new-chain
//用命令中所指定的名字创建一个新链。
9、
-P或者--policy
//设置链的默认目标,即策略。 与链中任何规则都不匹配的信息包将强制使用此命令中指定的策略。
10、-Z或者--zero
//将指定链中的所有规则的包字节计数器清零。
(三) match 匹配
分为四大类:通用匹配、隐含匹配、显示匹配、针对非正常包的匹配
1、通用匹配
无论我们使用何种协议,装入何种扩展,通用匹配都可以使用。不需要前提条件
(1) -p(小写)或--protocol
用来检查某些特定协议。协议有TCP\UDP\ICMP三种。可用逗号分开这三种协议的任何组合。也可用“!”号进行取反,表示除该协议外的剩下的协议。也可用all表示全部协议。默认是all,但只代表tcp\udp\icmp三种协议。
$ iptable -A INPUT -p TCP,UDP
$ iptable -A INPUT -p !
ICMP
//这两种表示的意思为一样的。
(2) -s 或 --source
以Ip源地址匹配包。根据源地址范围确定是否允许或拒绝数据包通过过滤器。可使用
“!”符号。 默认是匹配所有ip地址。
可是单个Ip地址,也可以指定一个网段。 如:
192.168.1.1/255.255.255.255
表示一个地址。 192.168.1.0/255.255.255.0
表示一个网段。
(3) -d 或
--destination
用目的Ip地址来与它们匹配。与 source 的格式用法一样
(4) -i
以包进入本地所使用的网络接口来匹配包。只能用INPUT \ FORWARD
\PREROUTING 三个链中。用在其他任何链中都会出错。
可使用“+” “!”两种符号。
只用一个“+"号,表示匹配所有的包,不考虑使用哪个接口。如: iptable -A
INPUT -i + //表匹配所有的包。
放在某类接口后面,表示所有此类接口相匹配。如:
iptable -A INPUT -i eth+
//表示匹配所有ethernet 接口。
(5)
-o
以数据包出本地所使用的网络接口来匹配包。与-i一样的使用方法。
只能用OUTPUT \ FORWARD \POSTROUTING
三个链中。用在其他任何链中都会出错。
可使用“+” “!”两种符号。
(6) -f (或
--fragment )
用来匹配一个被分片的包的第二片或以后的部分。因一个数据包被分成多片以后,只有第一片带有源或目标地址。后面的都不带
,所以只能用这个来匹配。可防止碎片攻击。
2、隐含匹配
这种匹配是隐含的,自动的载入内核的。如我们使用 --protocol
tcp 就可以自动匹配TCP包相关的特点。
分三种不同协议的隐含匹配:tcp
udp icmp
2.1 tcp
match
tcp match 只能隐含匹配TCP包或流的细节。但必须有 -p tcp 作为前提条件。
(2.1.1) TCP
--sport
基于tcp包的源端口匹配包 ,不指定此项则表示所有端口。
iptable -A INPUT -p TCP
--sport
22:80 //TCP源端口号22到80之间的所有端口。
iptable -A INPUT -p TCP
--sport
22:
//TCP源端口号22到65535之间的所有端口。
(2.1.2) TCP
--dport
基于tcp包的目的端口来匹配包。 与--sport端口用法一样。
(2.1.3) TCP
--flags
匹配指定的TCP标记。
iptable -p TCP --tcp-flags
SYN,FIN,ACK SYN
2.2 UDP
match
(2.1.1) UDP --sport
基于UDP包的源端口匹配包 ,不指定此项则表示所有端口。
(2.1.1) UDP --dport
基于UDP包的目的端口匹配包 ,不指定此项则表示所有端口。
2.3 icmp
match
icmp --icmp-type
根据ICMP类型包匹配。类型 的指定可以使用十进制数或相关的名字,不同的类型,有不同的ICMP数值表示。也可以用“!”取反。
例:
iptable -A INPUT -p icmp-imcp-type
8
3、显示匹配
显示匹配必须用 -m装
载。
(1)limit
match
必须用 -m limit 明确指出。
可以对指定的规则的匹配次数加以限制。即,当某条规则匹配到一定次数后,就不再匹配。也就是限制可匹配包的数量。这样可以防止DOS攻击。
限制方法: 设定对某条规则 的匹配最大次数。设一个限定值 。
当到达限定值以后,就停止匹配。但有个规定,在超过限制次数后,仍会每隔一段时间再增加一次匹配次数。但增加的空闲匹配数最大数量不超过最大限制次数。
--limit rate
最大平均匹配速率:可赋的值有‘/second‘, ‘/minute‘, ‘/hour‘, or
‘/day‘这样的单位,默认是3/hour。
--limit-burst number
待匹配包初始个数的最大值:若前面指定的极限还没达到这个数值,则概数字加1.默认值为5
iptable -A INPUT -m limit
--limt 3/hour
//设置最大平均匹配速率。也就是单位时间内,可匹配的数据包个数。 --limt 是指定隔多
长时间发一次通行证。
iptable -A INPUT -m
limit --limit-burst 5 //设定刚开始发放5个通行证,也最多只可匹配5个数据包。
(2) mac match
只能匹配MAC源地址。基于包的MAC源地址匹配包
iptable -A INPUT -m
mac --mac-source
00:00:eb:1c:24
//源地址匹配些MAC地址
(3) mark
match
以数据包被 设置的MARK来匹配包。这个值由 MARK TARGET 来设置的。
(4) multiport match
这个模块匹配一组源端口或目标端口,最多可以指定15个端口。只能和-p tcp 或者 -p udp 连着使用。
多端口匹配扩展让我们能够在一条规则里指定不连续的多个端口。如果没有这个扩展,我们只能按端口来写规则了。这只是标准端口匹配的增强版。不能在一条规则里同时用标准端口匹配和多端口匹配。
三个选项:
--source-port ;
--destination-port ; --port
iptable -A INPUT -p TCP
-m multiport --source-port
22,28,115
iptable -A INPUT -p TCP
-m multiport --destination-port
22,28,115
iptable -A INPUT -p TCP
-m multiport --port 22,28,115
(5) state match
状态匹配扩展要有内核里的连接跟踪代码的协助。因为是从连接跟踪机制得到包的状态。这样不可以了解所处的状态。
(6) tos match
根据TOS字段匹配包,用来控制优先级。
(7) ttl
match
根据IP头里的TTL字段来匹配包。
用来更改包的TTL,有些ISP根据TTL来判断是不是有多台机器共享连接上网。
iptables -t mangle -A PREROUTING -i eth0
-j TTL --ttl-set 64
iptables -t mangle -A PREROUTING -i eth0 -j
TTL --ttl-dec 1
# 离开防火墙的时候实际上TTL已经-2了,因为防火墙本身要-1一次。
iptables -t mangle -A PREROUTING -i eth0 -j
TTL --ttl-inc 1
# 离开防火墙的时候不增不减,tracert就不好用了,呵呵。
(8) owner match
基于包的生成者(即所有者或拥有者)的ID来匹配包。
owner 可以是启动进程的用户的ID,或用户所在的级的ID或进程的ID,或会话的ID。此只能用在OUTPUT 中。
此模块设为本地生成包匹配包创建者的不同特征。而且即使这样一些包(如ICMP ping应答)还可能没有所有者,因此永远不会匹配。
--uid-owner userid
如果给出有效的user id,那么匹配它的进程产生的包。
--gid-owner groupid
如果给出有效的group id,那么匹配它的进程产生的包。
--sid-owner seessionid
根据给出的会话组匹配该进程产生的包。
( 四) targets/jump
指由规则指定的操作,对与规则匹配的信息包执行什么动作。
1、accept
这个参数没有任何选项。指定 -j accept 即可。
一旦满
足匹配不再去匹配表或链内定义的其他规则。但它还可能会匹配其他表和链内的规则。即在同一个表内匹配后就到上为止,不往下继续。
2、drop
-j drop 当信息包与规则完全匹配时,将丢弃该
包。不对它做处理。并且不向发送者返回任何信息。也不向路由器返回信息。
3、reject
与drop相同的工作方式,不同的是,丢弃包后,会发送错误信息给发送方。
iptables -A FORWARD -p TCP --dport 22 -j
REJECT --reject-with icmp-net-unreachable
4、DNAT
用在prerouting链上。
做目的网络地址转换的。就是重写目的的IP地址。
如果一个包被匹配,那么和它属于同一个流的所有的包都会被自动转换。然后可以被路由到正确的主机和网络。
也就是如同防火墙的外部地址映射。把外部地址映射到内部地址上。
iptables -t nat -A
PREROUTING -d 218.104.235.238 -p
TCP --dport 110,125 -j
DNAT --to-destination 192.168.9.1
//把所有访问218.104.235.238地址 110.125端口的包全部转发到
192.168.9.1上。
--to-destination //目的地重写
5、SNAT
用在nat 表的postrouting链表。这个和DNAT相反。是做源地址转换。就是重写源地址IP。
常用在内部网到外部网的转换。
--to-source
iptables -t nat POSTROUTING -o eth0 -p tcp
-j SNAT --to-source 218.107.248.127
//从eth0接口往外发的数据包都把源地址重写为218.107.248.127
********************
iptables -t nat -A PREROUTING -p tcp -d
15.45.23.67 --dport 80 -j DNAT --to-destination 192.168.1.9
#
将所有的访问15.45.23.67:80端口的数据做DNAT发到192.168.1.9:80
如果和192.168.1.9在同一内网的机器要访问15.45.23.67,防火墙还需要做设置,改变源IP为防火墙内网IP
192.168.1.1。否则数据包直接发给内网机器,对方将丢弃。
iptables -t nat -A POSTROUTING -p tcp --dst
15.45.23.67 --dport 80 -j SNAT --to-source 192.168.1.1
#
将所有的访问15.45.23.67:80端口的数据包源IP改为192.168.1.1
如果防火墙也需要访问15.45.23.67:80,则需要在OUTPUT链中添加,因为防火墙自己发出的包不经过PREROUTING。
iptables -t nat -A OUTPUT --dst 15.45.23.67
--dport 80 -j DNAT --to-destination 192.168.1.9
********************
6、MASQUERADE
masquerade 的作用和 SNAT的作用是一样的。
区别是,他不需要指定固定的转换后的IP地址。专门用来设计动态获取IP地址的连接的。
MASQUERADE的作用是,从服务器的网卡上,自动获取当前ip地址来做NAT
如家里的ADSL上网,外网的IP地址不是固定的,你无法固定的设定NAT转换后的IP地址。这时就需要用masquerade来动态获取了。
iptables -t nat -A POSTROUTING -s 192.168.1.0/24 -j
masquerade
//即把192.168.1.0 这个网段的地址都重写为动态的外部IP地址。
7、REDIRECT
只能在NAT表中的PREROUTING OUTPUT 链中使用
在防火墙所在的机子内部转发包或流到另一个端口。比如,我们可以把所有去往端口HTTP的包REDIRECT到HTTP
proxy(例如squid),当然这都发生在我们自己的主机内部。
--to-ports
iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT
--to-ports 8080
不使用这个选项,目的端口不会被改变。
指定一个端口,如--to-ports 8080
指定端口范围,如--to-ports 8080-8090
8、RETURN
顾名思义,它使包返回上一层,顺序是:子链——>父链——>缺省的策略。具体地说,就是若包在子链中遇到了RETURN,则返回父链的下一条
规则继续进行条件的比较,若是在父链(或称主链,比如INPUT)中遇到了RETURN,就要被缺省的策略(一般是ACCEPT或DROP)操作了。(译
者注:这很象C语言中函数返回值的情况)
9、MIRROR
颠倒IP头中的源地址与目的地址,再转发。
10、LOG
在内核空间记录日志,dmesg等才能看。
11、ULOG
在用户空间记录日志。
(五)IP转发功能
打开转发IP功能(IP forwarding):
echo "1" > /proc/sys/net/ipv4/ip_forward
如果使用PPP、DHCP等动态IP,需要打开:
echo "1" > /proc/sys/net/ipv4/ip_dynaddr