标签:
转载自http://www.tuicool.com/articles/NzyqAn
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了。实时应用场景可以使用Storm,它是一个实时处理系统,它为实时处理类应用提供了一个计算模型,可以很容易地进行编程处理。为了统一离线和实时计算,一般情况下,我们都希望将离线和实时计算的数据源的集合统一起来作为输入,然后将数据的流向分别经由实时系统和离线分析系统,分别进行分析处理,这时我们可以考虑将数据源(如使用Flume收集日志)直接连接一个消息中间件,如Kafka,可以整合Flume+Kafka,Flume作为消息的Producer,生产的消息数据(日志数据、业务请求数据等等)发布到Kafka中,然后通过订阅的方式,使用Storm的Topology作为消息的Consumer,在Storm集群中分别进行如下两个需求场景的处理:
实时处理,只要开发满足业务需要的Topology即可,不做过多说明。这里,我们主要从安装配置Kafka、Storm,以及整合Kafka+Storm、整合Storm+HDFS、整合Kafka+Storm+HDFS这几点来配置实践,满足上面提出的一些需求。配置实践使用的软件包如下所示:
程序配置运行所基于的操作系统为CentOS 5.11。
Kafka安装配置
我们使用3台机器搭建Kafka集群:
192.168.4.142 h1 192.168.4.143 h2 192.168.4.144 h3
在安装Kafka集群之前,这里没有使用Kafka自带的Zookeeper,而是独立安装了一个Zookeeper集群,也是使用这3台机器,保证Zookeeper集群正常运行。 首先,在h1上准备Kafka安装文件,执行如下命令:
cd /usr/local/
wget http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.9.2-0.8.1.1.tgz
tar xvzf kafka_2.9.2-0.8.1.1.tgz
ln -s /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
chown -R kafka:kafka /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
修改配置文件/usr/local/kafka/config/server.properties,修改如下内容:
broker.id=0
zookeeper.connect=h1:2181,h2:2181,h3:2181
然后,将配置好的安装文件同步到其他的h2、h3节点上:
scp -r /usr/local/kafka_2.9.2-0.8.1.1/ h2:/usr/local/
scp -r /usr/local/kafka_2.9.2-0.8.1.1/ h3:/usr/local/
最后,在h2、h3节点上配置,执行如下命令:
cd /usr/local/
ln -s /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
chown -R kafka:kafka /usr/local/kafka_2.9.2-0.8.1.1 /usr/local/kafka
并修改配置文件/usr/local/kafka/config/server.properties内容如下所示:
broker.id=1 # 在h1修改
broker.id=2 # 在h2修改
因为Kafka集群需要保证各个Broker的id在整个集群中必须唯一,需要调整这个配置项的值(如果在单机上,可以通过建立多个Broker进程来模拟分布式的Kafka集群,也需要Broker的id唯一,还需要修改一些配置目录的信息)。 在集群中的h1、h2、h3这三个节点上分别启动Kafka,分别执行如下命令:
bin/kafka-server-start.sh /usr/local/kafka/config/server.properties &
可以通过查看日志,或者检查进程状态,保证Kafka集群启动成功。 我们创建一个名称为my-replicated-topic5的Topic,5个分区,并且复制因子为3,执行如下命令:
bin/kafka-topics.sh --create --zookeeper h1:2181,h2:2181,h3:2181 --replication-factor 3 --partitions 5 --topic my-replicated-topic5
查看创建的Topic,执行如下命令:
bin/kafka-topics.sh --describe --zookeeper h1:2181,h2:2181,h3:2181 --topic my-replicated-topic5
结果信息如下所示:
Topic:my-replicated-topic5 PartitionCount:5 ReplicationFactor:3 Configs:
Topic: my-replicated-topic5 Partition: 0 Leader: 0 Replicas: 0,2,1 Isr: 0,2,1
Topic: my-replicated-topic5 Partition: 1 Leader: 0 Replicas: 1,0,2 Isr: 0,2,1
Topic: my-replicated-topic5 Partition: 2 Leader: 2 Replicas: 2,1,0 Isr: 2,0,1
Topic: my-replicated-topic5 Partition: 3 Leader: 0 Replicas: 0,1,2 Isr: 0,2,1
Topic: my-replicated-topic5 Partition: 4 Leader: 2 Replicas: 1,2,0 Isr: 2,0,1
上面Leader、Replicas、Isr的含义如下:
Partition: 分区
Leader : 负责读写指定分区的节点
Replicas : 复制该分区log的节点列表
Isr : "in-sync" replicas,当前活跃的副本列表(是一个子集),并且可能成为Leader
我们可以通过Kafka自带的bin/kafka-console-producer.sh和bin/kafka-console-consumer.sh脚本,来验证演示如果发布消息、消费消息。 在一个终端,启动Producer,并向我们上面创建的名称为my-replicated-topic5的Topic中生产消息,执行如下脚本:
bin/kafka-console-producer.sh --broker-list h1:9092,h2:9092,h3:9092 --topic my-replicated-topic5
在另一个终端,启动Consumer,并订阅我们上面创建的名称为my-replicated-topic5的Topic中生产的消息,执行如下脚本:
bin/kafka-console-consumer.sh --zookeeper h1:2181,h2:2181,h3:2181 --from-beginning --topic my-replicated-topic5
可以在Producer终端上输入字符串消息行,然后回车,就可以在Consumer终端上看到消费者消费的消息内容。 也可以参考Kafka的Producer和Consumer的Java API,通过API编码的方式来实现消息生产和消费的处理逻辑。
Storm安装配置
Storm集群也依赖Zookeeper集群,要保证Zookeeper集群正常运行。Storm的安装配置比较简单,我们仍然使用下面3台机器搭建:
192.168.4.142 h1 192.168.4.143 h2 192.168.4.144 h3
首先,在h1节点上,执行如下命令安装:
cd /usr/local/
wget http://mirror.bit.edu.cn/apache/incubator/storm/apache-storm-0.9.2-incubating/apache-storm-0.9.2-incubating.tar.gz
tar xvzf apache-storm-0.9.2-incubating.tar.gz
ln -s /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
chown -R storm:storm /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
然后,修改配置文件conf/storm.yaml,内容如下所示:
storm.zookeeper.servers:
- "h1"
- "h2"
- "h3"
storm.zookeeper.port: 2181
#
nimbus.host: "h1"
supervisor.slots.ports:
- 6700
- 6701
- 6702
- 6703
storm.local.dir: "/tmp/storm"
将配置好的安装文件,分发到其他节点上:
scp -r /usr/local/apache-storm-0.9.2-incubating/ h2:/usr/local/
scp -r /usr/local/apache-storm-0.9.2-incubating/ h3:/usr/local/
最后,在h2、h3节点上配置,执行如下命令:
cd /usr/local/
ln -s /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
chown -R storm:storm /usr/local/apache-storm-0.9.2-incubating /usr/local/storm
Storm集群的主节点为Nimbus,从节点为Supervisor,我们需要在h1上启动Nimbus服务,在从节点h2、h3上启动Supervisor服务:
bin/storm nimbus & bin/storm supervisor &
为了方便监控,可以启动Storm UI,可以从Web页面上监控Storm Topology的运行状态,例如在h2上启动:
bin/storm ui &
这样可以通过访问 http://h2:8080/ 来查看Topology的运行状况。
整合Kafka+Storm
消息通过各种方式进入到Kafka消息中间件,比如可以通过使用Flume来收集日志数据,然后在Kafka中路由暂存,然后再由实时计算程序Storm做实时分析,这时我们就需要将在Storm的Spout中读取Kafka中的消息,然后交由具体的Spot组件去分析处理。实际上,apache-storm-0.9.2-incubating这个版本的Storm已经自带了一个集成Kafka的外部插件程序storm-kafka,可以直接使用,例如我使用的Maven依赖配置,如下所示:
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>0.9.2-incubating</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka</artifactId>
<version>0.9.2-incubating</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.9.2</artifactId>
<version>0.8.1.1</version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
下面,我们开发了一个简单WordCount示例程序,从Kafka读取订阅的消息行,通过空格拆分出单个单词,然后再做词频统计计算,实现的Topology的代码,如下所示:
package org.shirdrn.storm.examples;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class MyKafkaTopology {
public static class KafkaWordSplitter extends BaseRichBolt {
private static final Log LOG = LogFactory.getLog(KafkaWordSplitter.class);
private static final long serialVersionUID = 886149197481637894L;
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String line = input.getString(0);
LOG.info("RECV[kafka -> splitter] " + line);
String[] words = line.split("\\s+");
for(String word : words) {
LOG.info("EMIT[splitter -> counter] " + word);
collector.emit(input, new Values(word, 1));
}
collector.ack(input);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
public static class WordCounter extends BaseRichBolt {
private static final Log LOG = LogFactory.getLog(WordCounter.class);
private static final long serialVersionUID = 886149197481637894L;
private OutputCollector collector;
private Map<String, AtomicInteger> counterMap;
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
this.counterMap = new HashMap<String, AtomicInteger>();
}
@Override
public void execute(Tuple input) {
String word = input.getString(0);
int count = input.getInteger(1);
LOG.info("RECV[splitter -> counter] " + word + " : " + count);
AtomicInteger ai = this.counterMap.get(word);
if(ai == null) {
ai = new AtomicInteger();
this.counterMap.put(word, ai);
}
ai.addAndGet(count);
collector.ack(input);
LOG.info("CHECK statistics map: " + this.counterMap);
}
@Override
public void cleanup() {
LOG.info("The final result:");