首页
Web开发
Windows程序
编程语言
数据库
移动开发
系统相关
微信
其他好文
会员
首页
>
其他好文
> 详细
动态规划解题的一般思路
时间:
2015-08-12 18:53:31
阅读:
87
评论:
0
收藏:
0
[点我收藏+]
标签:
* 许多求最优解的问题可以用动态规划来解决。
* 首先要把原问题分解为若干个子问题。注意单纯的递归往往会导致子问题被重复计算,用动态规划的方法,子问题的解一旦求出就要被保存,所以每个子问题只需求解一次。
* 子问题经常和原问题形式相似,有时甚至完全一样,只不过规模从原来的n 变成了n-1,或从原来的n×m 变成了n×(m-1) ……等等。
* 找到子问题,就意味着找到了将整个问题逐渐分解的办法。
* 分解下去,直到最底层规模最小的的子问题可以一目了然地看出解。
* 每一层子问题的解决,会导致上一层子问题的解决,逐层向上,就会导致最终整个问题的解决。
* 如果从最底层的子问题开始,自底向上地推导出一个个子问题的解,那么编程的时候就不需要写递归函数。
* 用动态规划解题时,将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。
* 比如数字三角形,子问题就是“从位于(r,j)数字开始,到底边路径的最大和”。这个子问题和两个变量r 和j 相关,那么一个“状态”,就是r, j 的一组取值,即每个数字的位置就是一个“状态”。该“状态”所对应的“值”,就是从该位置的数字开始,到底边的最佳路径上的数字之和。
* 定义出什么是“状态”,以及在该 “状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。
* 用动态规划解题,如何寻找“子问题”,定义“状态”,“状态转移方程”是什么样的,并没有一定之规,需要具体问题具体分析,题目做多了就会有感觉。
* 甚至,对于同一个问题,分解成子问题的办法可能不止一种,因而“状态”也可以有不同的定义方法。不同的“状态”定义方法可能会导致时间、空间效率上的区别。
动态规划解题的一般思路
标签:
原文地址:http://www.cnblogs.com/riden/p/4724714.html
踩
(
0
)
赞
(
0
)
举报
评论
一句话评论(
0
)
登录后才能评论!
分享档案
更多>
2021年07月29日 (22)
2021年07月28日 (40)
2021年07月27日 (32)
2021年07月26日 (79)
2021年07月23日 (29)
2021年07月22日 (30)
2021年07月21日 (42)
2021年07月20日 (16)
2021年07月19日 (90)
2021年07月16日 (35)
周排行
更多
分布式事务
2021-07-29
OpenStack云平台命令行登录账户
2021-07-29
getLastRowNum()与getLastCellNum()/getPhysicalNumberOfRows()与getPhysicalNumberOfCells()
2021-07-29
【K8s概念】CSI 卷克隆
2021-07-29
vue3.0使用ant-design-vue进行按需加载原来这么简单
2021-07-29
stack栈
2021-07-29
抽奖动画 - 大转盘抽奖
2021-07-29
PPT写作技巧
2021-07-29
003-核心技术-IO模型-NIO-基于NIO群聊示例
2021-07-29
Bootstrap组件2
2021-07-29
友情链接
兰亭集智
国之画
百度统计
站长统计
阿里云
chrome插件
新版天听网
关于我们
-
联系我们
-
留言反馈
© 2014
mamicode.com
版权所有 联系我们:gaon5@hotmail.com
迷上了代码!