码迷,mamicode.com
首页 > 其他好文 > 详细

图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法

时间:2014-07-16 20:34:45      阅读:261      评论:0      收藏:0      [点我收藏+]

标签:style   blog   http   2014   for   io   

Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负。

Dijkstra算法是贪婪算法的一个很好的例子。设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定。算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u

的所有出边进行松弛。如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新。

bubuko.com,布布扣

如上图,u为源点,顶点全加入到优先队列中

bubuko.com,布布扣

,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x、v、w),队列最小值为x。

bubuko.com,布布扣

将x出列加入S,将x的出边松弛(v、y、w),其中w的值需要更新(4<5),队列最小值为v。

bubuko.com,布布扣

将v出列,加入到S中,将v的出边松弛(w),因x已在S中,故不做松弛。队列中的最小值为y。

bubuko.com,布布扣

将y出列,y加入到S,松弛y的出边(w、z),更新w的值(3<4),队列最小值为w。

bubuko.com,布布扣

将w出列,加入到S中,松弛w的出边(z),队列最小值为z。

bubuko.com,布布扣

将z出列,加入到S中。将z的出边松弛(无),此时队列为空,算法结束。

Dijkstra算法的运行时间依赖于最小优先队列的具体实现。如果简单的运用数组实现求最小值,运行时间为O(V2+E)=O(V2)。

如果图比较稀疏,E=o(V2/lgV),如果用二叉最小堆实现,则为O((V+E)lgV)。

如果用斐波那契堆实现,可以提升到O(VlgV+E)。

import sys
class Vertex(object):
    def __init__(self,key):
        self.id=key
        self.adj={}
    def addNeighbor(self,nbr,weight=0):
        self.adj[nbr]=weight
    def getNeighbors(self):
        return self.adj.keys()
    def getId(self):
        return self.id
    def getWeight(self,key):
        return self.adj[key]
class Graph(object):
    def __init__(self):
        self.vertexlist={}
        self.size=0
    def addVertex(self,key):
        vertex=Vertex(key)
        self.vertexlist[key]=vertex
        self.size+=1
        return vertex
    def getVertex(self,key):
        return self.vertexlist.get(key)
    def __contains__(self,key):
        if key in self.vertexlist:
            return True
        else:
            return False
    def addEdge(self,f,t,weight=0):
        if f not in self.vertexlist:
            self.addVertex(f)
        if t not in self.vertexlist:
            self.addVertex(t)
        self.vertexlist[f].addNeighbor(self.vertexlist[t],weight)
    def getVertices(self):
        return self.vertexlist.keys()
    def __iter__(self):
        return iter(self.vertexlist.values())
def Dijkstra(G,s):
    path={}
    vertexlist=[]
    for v in G:
        vertexlist.append(v)
        path[v]=sys.maxsize
    path[s]=0
    queue=PriorityQueue(path)
    queue.buildHeap(vertexlist)
    while queue.size>0:
        vertex=queue.delMin()
        for v in vertex.getNeighbors():
            newpath=path[vertex]+vertex.getWeight(v)
            if newpath<path[v]:
                path[v]=newpath
                queue.perUp(v)
    return path       
class PriorityQueue(object):
    def __init__(self,path):
        self.path=path
        self.queue=[]
        self.size=0
    def buildHeap(self,alist):
        self.queue=alist
        self.size=len(alist)
        for i in xrange(self.size/2-1,0,-1):
            self._perDown(i)
    def delMin(self):
        self.queue[0],self.queue[-1]=self.queue[-1],self.queue[0]
        minvertex=self.queue.pop()
        self.size-=1
        self._perDown(0)
        return minvertex
    
    def perUp(self,v):
        i=self.queue.index(v)
        self._perUp(i)
    def _perUp(self,i):
        if i>0:
            if self.path[self.queue[i]]<=self.path[self.queue[(i-1)/2]]:
                self.queue[i],self.queue[(i-1)/2]=self.queue[(i-1)/2],self.queue[i]
                self._perUp((i-1)/2)
    def _perDown(self,i):
        left=2*i+1
        right=2*i+2
        little=i
        if left<=self.size-1 and self.path[self.queue[left]]<=self.path[self.queue[i]]:
            little=left
        if right<=self.size-1 and self.path[self.queue[right]]<=self.path[self.queue[little]]:
            little=right
        if little!=i:
            self.queue[i],self.queue[little]=self.queue[little],self.queue[i]
            self._perDown(little)
       
if __name__==‘__main__‘:
    g= Graph()
    g.addEdge(‘u‘,‘x‘,1)
    g.addEdge(‘u‘,‘v‘,2)
    g.addEdge(‘u‘,‘w‘,5)
    g.addEdge(‘x‘,‘v‘,2)
    g.addEdge(‘x‘,‘y‘,1)
    g.addEdge(‘x‘,‘w‘,3)
    g.addEdge(‘v‘,‘w‘,3)
    g.addEdge(‘y‘,‘w‘,1)
    g.addEdge(‘y‘,‘z‘,1)
    g.addEdge(‘w‘,‘z‘,5)
    u=g.getVertex(‘u‘)
    path=Dijkstra(g,u)
    for v in path:
        print v.id,path[v]

  

图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法,布布扣,bubuko.com

图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法

标签:style   blog   http   2014   for   io   

原文地址:http://www.cnblogs.com/linxiyue/p/3833971.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!