标签:
题意:给出一个字符串,要求出一个最长子串的长度,子串满足可以将其分成三部分,第一部分跟第二部分互为回文串,第三部分跟第一部分一样。
做法:
先用求最长回文子串的Manacher算法,求出以第i个点和第i+1个点为中心的回文串长度,记录到数组c中 比如 10 9 8 8 9 10 10 9 8 我们通过运行Manacher求出第i个点和第i+1个点为中心的回文串长度 0 0 6 0 0 6 0 0 0
两个8为中心,10 9 8 8 9 10是个回文串,长度是6。 两个10为中心,8 9 10 10 9 8是个回文串,长度是6。
要满足题目所要求的内容,需要使得两个相邻的回文串,共享中间的一部分,比如上边的两个字符串,共享 8 9 10这一部分。 也就是说,左边的回文串长度的一半,要大于等于共享部分的长度,右边回文串也是一样。 因为我们已经记录下来以第i个点和第i+1个点为中心的回文串长度, 那么问题可以转化成,相距x的两个数a[i],a[i+x],满足a[i]/2>=x 并且 a[i+x]/2>=x,要求x尽量大
这可以用一个set维护,一开始集合为空,将下标跟a数组中的值绑定好,然后按照值降序排序,依次取出a数组中的元素,将其下标放入set中,每取出一个元素,再该集合中二分查找小于等于i+a[i]/2,但最大的元素,更新答案ans。 然后查找集合中大于等于i-a[i]/2,但最小的元素,更新答案ans。
因为排序后,每次要丢元素i进去的时候,若集合中的元素能够被i触及,那么肯定该元素一定能触及i。
答案就是3*ans
时间复杂度是nlogn
#include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<iostream> #include<algorithm> #include<bitset> #include<climits> #include<list> #include<iomanip> #include<stack> #include<set> using namespace std; const int MAXN=110010; int Ma[MAXN*2],Mp[MAXN*2],s[MAXN]; void Manacher(int len) { int l=0; Ma[l++]=-1; Ma[l++]=-2; for(int i=0;i<len;i++) { Ma[l++]=s[i]; Ma[l++]=-2; } Ma[l]=0; int mx=0,id=0; for(int i=0;i<l;i++) { Mp[i]=mx>i?min(Mp[2*id-i],mx-i):1; while(Ma[i+Mp[i]]==Ma[i-Mp[i]]) Mp[i]++; if(i+Mp[i]>mx) { mx=i+Mp[i]; id=i; } } } struct A { int id,val; bool operator <(A one)const { return val!=one.val?val<one.val:id<one.id; } }a[MAXN]; void create(int len) { Manacher(len); len=2*len+2; for(int i=3;i<len;i+=2) { int id=i/2-1; a[id].id=id; a[id].val=Mp[i]-1; } } int work(int len) { int ans=0; sort(a,a+len); set<int>st; set<int>::iterator it; for(int i=len-1;i>-1;i--) { if(a[i].val==0) break; int t=a[i].id+a[i].val/2; it=st.upper_bound(t); if(it!=st.begin()) { it--; if(*it<=t&&*it>a[i].id) ans=max(ans,*it-a[i].id); } t=a[i].id-a[i].val/2; it=st.lower_bound(t); if(it!=st.end()&&*it<a[i].id) ans=max(ans,a[i].id-*it); st.insert(a[i].id); } return ans; } int main() { int T; scanf("%d",&T); for(int cs=1;cs<=T;cs++) { int n; scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d",s+i); create(n); printf("Case #%d: %d\n",cs,3*work(n)); } return 0; }
1 10 2 3 4 4 3 2 2 3 4 4
Case #1: 9
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/stl112514/article/details/47447137