标签:codeforces
题目传送:Codeforces Round #315 (Div. 2)
题意较难懂,不过只要推公式就好了
注意到S+(q - 1) * t = q * t;
只需要t等于S即可,即每次增加S秒,就需要重新听一次歌
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;
int main() {
int T, S, q;
scanf("%d %d %d", &T, &S, &q);
int ans = 0;
while(S < T) {
S = S * q;
ans ++;
}
cout << ans << endl;
return 0;
}
水题。。
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;
int n;
int vis[100005];
int ans[100005];
int pos[100005];
int pos_cnt;
int main() {
pos_cnt = 0;
scanf("%d", &n);
for(int i = 1; i <= n; i ++){
int t;
scanf("%d", &t);
if(t <= n && t >= 1 && vis[t] == 0) {
ans[i] = t;
vis[t] = 1;
}
else {
pos[pos_cnt ++] = i;
}
}
int p = 1;
for(int i = 0; i < pos_cnt; i ++) {
for(;p <= n; p ++) {
if(vis[p] == 0) {
ans[pos[i]] = p;
vis[p] = 1;
break;
}
}
}
for(int i = 1; i < n; i ++) {
printf("%d ", ans[i]);
}
printf("%d\n", ans[n]);
return 0;
}
枚举大法好。。
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#include <ctime>
#define LL long long
#define INF 0x7fffffff
using namespace std;
const int maxn = 2000005;
int pi[maxn];
int vis[maxn];
int hw[maxn];
void init() {
pi[1] = 0;
for(int i = 2; i < maxn; i ++) {
if(!vis[i]) {
pi[i] = pi[i - 1] + 1;
for(int j = 2 * i; j < maxn; j += i) {
vis[j] = 1;
}
}
else pi[i] = pi[i-1];
}
}
int p, q;
int search() {
for(int i = maxn - 1; i >= 0; i --) {
if((LL)pi[i] * q <= (LL)hw[i] * p) return i;
}
}
bool fun(int n) {
int m = 0;
int t = n;
while(t) {
m = m * 10 + t % 10;
t /= 10;
}
//cout << m << " " << n << endl;
return m == n;
}
int main() {
init();
hw[0] = 0;
for(int i = 1; i < maxn; i++) {
if(fun(i)) hw[i] = hw[i-1] + 1;
else hw[i] = hw[i-1];
}
scanf("%d %d", &p, &q);
int ans = search();
printf("%d\n", ans);
return 0;
}
题意:就是去求在一个含有n个元素的集合里,满足对称性和传递性,不满足自反性的关系有多少种。
这里有一个奇怪的东西——Bell数
Bell数,表示基数为n的集合划分数目,也就是对应的等价关系个数
可以发现一个奇怪的规律:ans[n] = Bell[n +1] - Bell[n];
然后根据Bell三角形打表就可以了
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0x7fffffff
using namespace std;
const int MOD = 1e9+7;
LL Bell[4005][4005];
int main() {
int n;
scanf("%d", &n);
Bell[0][0] = 1;
for(int i = 1; i <= n; i ++) {
Bell[i][0] = Bell[i - 1][i - 1];
for(int j = 1; j <= i; j ++) {
Bell[i][j] = (Bell[i][j - 1] + Bell[i - 1][j - 1]) % MOD;
}
}
printf("%I64d\n", Bell[n][n - 1]);
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
Codeforces Round #315 (Div. 2)
标签:codeforces
原文地址:http://blog.csdn.net/u014355480/article/details/47416605