标签:
分享两篇文章,结合看更清楚一点。
假设有一个学生各门课的成绩的表单,应用hive取出每科成绩前100名的学生成绩。
这个就是典型在分组取Top N的需求。
对于取出每科成绩前100名的学生成绩,针对学生成绩表,根据学科,成绩做order by排序,然后对排序后的成绩,执行自定义函数row_number(),必须带一个或者多个列参数,如ROW_NUMBER(col1, ....),它的作用是按指定的列进行分组生成行序列。在ROW_NUMBER(a,b) 时,若两条记录的a,b列相同,则行序列+1,否则重新计数。
只要返回row_number()返回值小于100的的成绩记录,就可以返回每个单科成绩前一百的学生。
成绩表结构
create table score_table ( subject string, student string, score int ) partitioned by (date string)
如果要查询2012年每科成绩前100的学生成绩,sql如下
create temporary function row_number as ‘com.blue.hive.udf.RowNumber‘; select subject,score,student from (select subject,score,student from score where dt=‘2012‘ order by subject,socre desc) order_score where row_number(subject) <= 100;
com.blue.hive.udf.RowNumber是自定义函数,函数的作用是按指定的列进行分组生成行序列。这里根据每个科目的所有成绩,生成序列,序列值从1开始自增。
假设成绩表的记录如下:
物理 80 张三 数学 100 李一 物理 90 张二 数学 90 李二 物理 100 张一 数学 80 李三
.....
经过order by全局排序后,记录如下
物理 100 张一 物理 90 张二 物理 80 张三
..... 数学 100 李一 数学 90 李二 数学 80 李三
....
接着执行row_number函数,返回值如下
科目 成绩 学生 row_number 物理 100 张一 1 物理 90 张二 2 物理 80 张三 3 ..... 数学 100 李一 1 数学 90 李二 2 数学 80 李三 3 ....
因为hive是基于MAPREADUCE的,必须保证row_number执行是在reducer中执行。上述的语句保证了成绩表的记录,按照科目和成绩做了全局排序,然后在reducer端执行row_number函数,如果在map端执行了row_number,那么结果将是错误的。
要查看row_number函数在map端还是reducer端执行,可以查看hive的执行计划:
create temporary function row_number as ‘com.blue.hive.udf.RowNumber‘; explain select subject,score,student from (select subject,score,student from score where dt=‘2012‘ order by subject,socre desc) order_score where row_number(subject) <= 100;
explain不会执行mapreduce计算,只会显示执行计划。
只要row_number函数在reducer端执行,除了使用order by全局排序配合,也可以使用distribute by + sort by。distribute by可以让相同科目的成绩记录发送到同一个reducer,而sort by可以在reducer端对记录做排序。
而使用order by全局排序,只有一个reducer,未能充分利用资源,相比之下,distribute by + sort by在这里更有性能优势,可以在多个reducer做排序,再做row_number的计算。
sql如下:
create temporary function row_number as ‘com.blue.hive.udf.RowNumber‘; select subject,score,student from (select subject,score,student from score where dt=‘2012‘ distribute by subject sort by subject asc, socre desc) order_score where row_number(subject) <= 100;
如果成绩有学院字段college,要找出学院里,单科成绩前一百的学生,解决方法如下:
create temporary function row_number as ‘com.blue.hive.udf.RowNumber‘; explain select college,subject,score,student from (select college,subject,score,student from score where dt=‘2012‘ order by college asc,subject asc,socre desc) order_score where row_number(college,subject) <= 100;
如果成绩有学院字段college,要找出学院里,总成绩前一百的学生,解决方法如下:
create temporary function row_number as ‘com.blue.hive.udf.RowNumber‘; explain select college,totalscore,student from (select college,student,sum(score) as totalscore from score where dt=‘2012‘ group by college,student order by college asc,totalscore desc) order_score where row_number(college) <= 100;
函数row_number(),必须带一个或者多个列参数,如ROW_NUMBER(col1, ....),它的作用是按指定的列进行分组生成行序列。在ROW_NUMBER(a,b) 时,若两条记录的a,b列相同,则行序列+1,否则重新计数。
package com.blue.hive.udf; import org.apache.hadoop.hive.ql.exec.UDF; public class RowNumber extends UDF { private static int MAX_VALUE = 50; private static String comparedColumn[] = new String[MAX_VALUE]; private static int rowNum = 1; public int evaluate(Object... args) { String columnValue[] = new String[args.length]; for (int i = 0; i < args.length; i++) 『 columnValue[i] = args[i].toString(); } if (rowNum == 1) { for (int i = 0; i < columnValue.length; i++) comparedColumn[i] = columnValue[i]; } for (int i = 0; i < columnValue.length; i++) { if (!comparedColumn[i].equals(columnValue[i])) { for (int j = 0; j < columnValue.length; j++) { comparedColumn[j] = columnValue[j]; } rowNum = 1; return rowNum++; } } return rowNum++; } }
编译后,打包成一个jar包,如/usr/local/hive/udf/blueudf.jar
然后在hive shell下使用,如下:
add jar /usr/local/hive/udf/blueudf.jar; create temporary function row_number as ‘com.blue.hive.udf.RowNumber‘; select subject,score,student from (select subject,score,student from score where dt=‘2012‘ order by subject,socre desc) order_score where row_number(subject) <= 100;
hive 0.12之前可用,0.12之后不可用,只能用窗口函数替代。
参考 http://chiyx.iteye.com/blog/1559460
-----------------------------------------分割线-----------------------------------------------------
问题:
有如下数据文件 city.txt (id, city, value)
cat city.txt
1 wh 500
2 bj 600
3 wh 100
4 sh 400
5 wh 200
6 bj 100
7 sh 200
8 bj 300
9 sh 900
需要按 city 分组聚合,然后从每组数据中取出前两条value最大的记录。
1、这是实际业务中经常会遇到的 group TopK 问题,下面来看看 pig 如何解决:
1
2
3
4
5
|
a = load ‘/data/city.txt‘ using PigStorage( ‘ ‘ ) as (id:chararray, city:chararray, value: int ); b = group a by city; c = foreach b {c1= order a by value desc ; c2=limit c1 2; generate group ,c2.value;}; d = stream c through `sed ‘s/[(){}]//g‘ `; dump d; |
结果:
1
2
3
|
(bj,600,300) (sh,900,400) (wh,500,200) |
这几行代码其实也实现了mysql中的 group_concat 函数的功能:
1
2
3
4
5
|
a = load ‘/data/city.txt‘ using PigStorage( ‘ ‘ ) as (id:chararray, city:chararray, value: int ); b = group a by city; c = foreach b {c1= order a by value desc ; generate group ,c1.value;}; d = stream c through `sed ‘s/[(){}]//g‘ `; dump d; |
结果:
1
2
3
|
(bj,600,300,100) (sh,900,400,200) (wh,500,200,100) |
2、下面我们再来看看hive如何处理group topk的问题:
本质上HSQL和sql有很多相同的地方,但HSQL目前功能还有很多缺失,至少不如原生态的SQL功能强大,
比起PIG也有些差距,如果SQL中这类分组topk的问题如何解决呢?
1
2
3
|
select * from city a where 2>( select count (1) from city where cname=a.cname and value>a.value) distribute by a.cname sort by a.cname,a.value desc ; |
但是这种写法在HQL中直接报语法错误了,下面我们只能用hive udf的思路来解决了:
排序city和value,然后对city计数,最后where过滤掉city列计数器大于k的行即可。
好了,上代码:
(1)定义UDF:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
package com.example.hive.udf; import org.apache.hadoop.hive.ql. exec .UDF; public final class Rank extends UDF{ private int counter; private String last_key; public int evaluate(final String key ){ if ( ! key .equalsIgnoreCase(this.last_key) ) { this.counter = 0; this.last_key = key ; } return this.counter++; } } |
(2)注册jar、建表、导数据,查询:
1
2
3
4
5
6
7
8
9
|
add jar Rank.jar; create temporary function rank as ‘com.example.hive.udf.Rank‘ ; create table city(id int ,cname string,value int ) row format delimited fields terminated by ‘ ‘ ; LOAD DATA LOCAL INPATH ‘city.txt‘ OVERWRITE INTO TABLE city; select cname, value from ( select cname,rank(cname) csum,value from ( select id, cname, value from city distribute by cname sort by cname,value desc )a )b where csum < 2; |
(3)结果:
1
2
3
4
5
6
|
bj 600 bj 300 sh 900 sh 400 wh 500 wh 200 |
REF:hive中分组取前N个值的实现
http://baiyunl.iteye.com/blog/1466343
3、最后我们来看一下原生态的MR:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
import java.io.IOException; import java.util.TreeSet; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class GroupTopK { // 这个 MR 将会取得每组年龄中 id 最大的前 3 个 // 测试数据由脚本生成:http://my.oschina.net/leejun2005/blog/76631 public static class GroupTopKMapper extends Mapper<LongWritable, Text, IntWritable, LongWritable> { IntWritable outKey = new IntWritable(); LongWritable outValue = new LongWritable(); String[] valArr = null ; public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { valArr = value.toString().split( "\t" ); outKey.set(Integer.parseInt(valArr[ 2 ])); // age int outValue.set(Long.parseLong(valArr[ 0 ])); // id long context.write(outKey, outValue); } } public static class GroupTopKReducer extends Reducer<IntWritable, LongWritable, IntWritable, LongWritable> { LongWritable outValue = new LongWritable(); public void reduce(IntWritable key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { TreeSet<Long> idTreeSet = new TreeSet<Long>(); for (LongWritable val : values) { idTreeSet.add(val.get()); if (idTreeSet.size() > 3 ) { idTreeSet.remove(idTreeSet.first()); } } for (Long id : idTreeSet) { outValue.set(id); context.write(key, outValue); } } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); System.out.println(otherArgs.length); System.out.println(otherArgs[ 0 ]); System.out.println(otherArgs[ 1 ]); if (otherArgs.length != 3 ) { System.err.println( "Usage: GroupTopK <in> <out>" ); System.exit( 2 ); } Job job = new Job(conf, "GroupTopK" ); job.setJarByClass(GroupTopK. class ); job.setMapperClass(GroupTopKMapper. class ); job.setReducerClass(GroupTopKReducer. class ); job.setNumReduceTasks( 1 ); job.setOutputKeyClass(IntWritable. class ); job.setOutputValueClass(LongWritable. class ); FileInputFormat.addInputPath(job, new Path(otherArgs[ 1 ])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[ 2 ])); System.exit(job.waitForCompletion( true ) ? 0 : 1 ); } } |
hadoop jar GroupTopK.jar GroupTopK /tmp/decli/record_new.txt /tmp/1
结果:
hadoop fs -cat /tmp/1/part-r-00000
0 12869695
0 12869971
0 12869976
1 12869813
1 12869870
1 12869951
......
数据验证:
awk ‘$3==0{print $1}‘ record_new.txt|sort -nr|head -3
12869976
12869971
12869695
可以看到结果没有问题。
注:测试数据由以下脚本生成:
http://my.oschina.net/leejun2005/blog/76631
PS:
如果说hive类似sql的话,那pig就类似plsql存储过程了:程序编写更自由,逻辑能处理的更强大了。
pig中还能直接通过反射调用java的静态类中的方法,这块内容请参考之前的相关pig博文。
附几个HIVE UDAF链接,有兴趣的同学自己看下:
Hive UDAF和UDTF实现group by后获取top值 http://blog.csdn.net/liuzhoulong/article/details/7789183
hive中自定义函数(UDAF)实现多行字符串拼接为一行 http://blog.sina.com.cn/s/blog_6ff05a2c0100tjw4.html
编写Hive UDAF http://www.fuzhijie.me/?p=118
Hive UDAF开发 http://richiehu.blog.51cto.com/2093113/386113
标签:
原文地址:http://www.cnblogs.com/LeeZz/p/4725868.html