码迷,mamicode.com
首页 > 其他好文 > 详细

【转】欧拉积分的一个延伸

时间:2015-08-15 16:18:57      阅读:126      评论:0      收藏:0      [点我收藏+]

标签:

求解$$\int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin xdx}  = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\cos xdx} $$的值.

显然\[\int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin xdx} \underline{\underline {{\text{令}x = \frac{\pi }{2} - t}}} \int_0^{\frac{\pi }{2}} {{{\ln }^2}\cos xdx}.\]

记待求积分为$I$,注意到

(1)$\int_0^\pi  {{{\ln }^2}\sin \left( x \right)dx}  = 2\int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin xdx}  = 2I$;

(2)$\int_0^\pi  {\ln \sin xdx}  = 2\int_0^{\frac{\pi }{2}} {\ln \sin xdx} \text{(Euler 积分)} =  - \pi \ln 2$;

(3)$\sum\limits_{n = 1}^\infty  {\frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{{\left( {2n - 1} \right)}^3}}}}=\beta(3)  = \frac{{{\pi ^3}}}{32}$,其中$\beta(s)$是Dirichlet beta 函数;

(4)$\int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\cot xdx}  = \frac{{{\pi ^3}}}{8}.$

事实上,我们有

\begin{align*}\int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  &= \int_0^\infty  {\frac{{{{\ln }^2}x}}{{1 + {x^2}}}dx}  = 2\int_0^1 {\frac{{{{\ln }^2}x}}{{1 + {x^2}}}dx}  = 2\int_0^1 {{{\ln }^2}x\sum\limits_{n = 1}^\infty  {{{\left( { - {x^2}} \right)}^{n - 1}}} dx} \\&= 2\sum\limits_{n = 1}^\infty  {{{\left( { - 1} \right)}^{n - 1}}\int_0^1 {{x^{2n - 2}}{{\ln }^2}xdx} }  = 4\sum\limits_{n = 1}^\infty  {\frac{{{{\left( { - 1} \right)}^{n - 1}}}}{{{{\left( {2n - 1} \right)}^3}}}}  = \frac{{{\pi ^3}}}{8}.\end{align*}

\begin{align*}2I &= \int_0^{\frac{\pi }{2}} {{{\left[ {\left( {\ln \sin \left( {2x} \right) - \ln 2} \right)} \right]}^2}dx}  - \int_0^{\frac{\pi }{2}} {2\ln \sin x\ln \cos xdx} \\&{ = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\sin \left( {2x} \right)dx}  - 2\ln 2\int_0^{\frac{\pi }{2}} {{\rm{lnsin}}\left( {2x} \right)dx}  + \frac{{{{\ln }^2}2}}{2}\pi  - \int_0^{\frac{\pi }{2}} {2\ln \sin x\ln \cos xdx} }\\&{ = \frac{1}{2}\int_0^\pi  {{{\ln }^2}\sin \left( x \right)dx}  - \ln 2\int_0^\pi  {\ln \sin xdx}  + \frac{{{{\ln }^2}2}}{2}\pi  - \int_0^{\frac{\pi }{2}} {2\ln \sin x\ln \cos xdx} }\\&{ = I + \frac{{3{{\ln }^2}2}}{2}\pi  - 2\int_0^{\frac{\pi }{2}} {\ln \sin x\ln \cos xdx} }.\end{align*}

\[2I = \int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  + 2\int_0^{\frac{\pi }{2}} {\ln \sin x\ln \cos xdx} .\]

因此

\begin{align*}3I &= \int_0^{\frac{\pi }{2}} {{{\ln }^2}\tan xdx}  + \frac{{3{{\ln }^2}2}}{2}\pi  = \frac{{{\pi ^3}}}{8} + \frac{{3{{\ln }^2}2}}{2}\pi \\I &= \frac{{{\pi ^3}}}{{24}} + \frac{{{{\ln }^2}2}}{2}\pi.\end{align*}

同时我们有

\[\int_0^{\frac{\pi }{2}} {\ln \sin x\ln \cos xdx}  = \frac{{{{\ln }^2}2}}{2}\pi  - \frac{{{\pi ^3}}}{{48}}.\]

这题挺好的,哈哈,是Euler积分的一个延伸吧.

关于Dirichlet beta 函数可参阅:

http://mathworld.wolfram.com/DirichletBetaFunction.html或是http://en.wikipedia.org/wiki/Dirichlet_beta_function

解法二:$$ \beta(x,y) = 2\int_0^{\frac{\pi}{2}} \sin^{2x-1}(t) \cos^{2y-1}(t) \ dt $$

$$ \frac{\partial }{\partial x} \beta(x,y) = 4\int_0^{\frac{\pi}{2}} \sin^{2x-1}(t)\ln(\sin t) \cos^{2y-1}(t) \ dt$$

$$ \frac{\partial}{\partial y} \left( \frac{\partial}{\partial x} \beta(x,y) \right) = 8\int_0^{\frac{\pi}{2}} \sin^{2x-1}(t) \ln(\sin t ) \ln(\cos t) \cos^{2y-1}(t) \ dt $$

and we have $$ \beta(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} $$

so differentiate and put $ x =\frac{1}{2} , y = \frac{1}{2} $

$$ \psi \left(\frac{1}{2} \right) = -2\ln 2 - \gamma $$

$$ \psi(1) = -\gamma $$

$$ \psi^{(1)}(1) = \frac{\pi^2}{6} $$

$$ \beta \left( \frac{1}{2} , \frac{1}{2} \right) = \frac{\Gamma \left( \frac{1}{2} \right)^2}{\Gamma(1)} = \pi $$ 

thus you‘ll have the integral $ = \frac{\pi}{8} \left(4\ln(2)^2 - \frac{\pi^2}{6} \right) $

参阅:http://math.stackexchange.com/questions/492878/find-int-0-frac-pi2-ln-sinx-ln-cosx-mathrm-dx?rq=1

解法三:A third approach would be the Fourier series:   

Namely, consider  

$$\ln \left (2\sin \frac{x}{2}\right )=-\sum_{n=1}^{\infty}\frac{\cos nx}{n};(0<x<2\pi)$$   

After squared:  

$$\ln^2\left (2\sin \frac{x}{2}\right )=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty}\frac{\cos kx\cos nx}{kn}$$     

Now, integrate the last equation from $x=0$ to $x=\pi$  

On the right side, we get:  

$$\frac{\pi}{2}\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi}{2}\frac{\pi^2}{6}=\frac{\pi^3}{12}$$    

because $$I=\int_{0}^{\pi}\cos kx\cos nx\,dx=0;k\neq n$$ $$I=\frac{\pi}{2};k=n$$

On the left side:  

$$\int_{0}^{\pi}\ln^2\left (2\sin \frac{x}{2}\right )\,dx= \ln^22 \int_{0}^{\pi}dx + 4\ln 2 \int_{0}^{\frac{\pi}{2}} \ln \left (\sin x\right )dx+2 \int_{0}^{\frac{\pi}{2}} \ln^2 \left (\sin x\right )dx $$  

Since we  know that $ \int_{0}^{\frac{\pi}{2}} \ln(\sin x)dx=-\frac{\pi}{2}\ln(2) $ then we get $ \int_{0}^{\frac{\pi}{2}}\ln^{2}(\sin x)dx $ from the equation.

解法四:

Here is a completely different way to approach this integral, which relies on some elementary complex analysis(Cauchy‘s theorem). It is based on an approach which I have seen several times employed to compute $\int_0^{\pi/2}\log{(\sin{x})}\,dx$ (particularly, in Ahlfors‘s book).

The idea is to integrate the principal branch of $f(z) := \log^2{(1 - e^{2iz})} = \log^2{(-2ie^{iz}\sin{z})}$ over the contour below, and then let $R \to \infty$ and $\epsilon \to 0$.  

技术分享

First of all, $1 - e^{2iz} \leq 0$ only when $z = k\pi + iy$, where $k$ is integral and $y \leq 0$. Thus, in the region of the plane which is obtained by omitting the lines $\{k\pi + iy: y\leq 0\}$ for $k \in \mathbb Z$, the principal branch of $\log{(1-e^{2iz})}$ is defined and analytic. Note that, for each fixed $R$ and $\epsilon$, the contour we wish to integrate over is contained entirely within this region.

By Cauchy‘s theorem, the integral over the contour vanishes for each fixed $R$. Since $f(x + iR) = \log^2{(1 - e^{2ix}e^{-2R})} \to 0$ uniformly as $R \to \infty$, the integral over the segment $[iR,\pi/2 + iR]$ vanishes in the limit. Similarly, since $1 - e^{2iz} = O(z)$ as $z \to 0$, we have $f(z) = O(\log^2{|z|})$ for small enough $z$, which, since $\epsilon \log^2{\epsilon} \to 0$ with $\epsilon$, means that the  the integral over the circular arc from $i\epsilon$ to $\epsilon$ vanishes as $\epsilon \to 0$. 

From the vertical sides of the contour, we get the contribution

\begin{align*}\int_{[\pi/2,\pi/2 + iR]} + \int_{[iR,i\epsilon]} f(z)\,dz & = i\int_0^R f(\pi/2 + iy)\,dy -i\int_\epsilon^R f(iy)\,dy.\end{align*}

Since $f(iy)$ and $f(\pi/2 + iy)$ are real, this contribution is purely imaginary. 

Finally, the contribution from the bottom side of the contour, after letting $\epsilon \to 0$, is

\begin{align*}\int_0^{\pi/2} f(x)\,dx = \int_0^{\pi/2} \log^2{(-2ie^{ix}\sin{x})}\,dx,\end{align*}

and we know from the preceding remarks that the real part of this integral must vanish. For $x$ between $0$ and $\pi/2$, the quantity $2\sin{x}$ is positive. Writing $-ie^{ix} = e^{i(x - \pi/2)}$, we see that $x - \pi/2$ is the unique value of $\arg{(-2ie^{ix}\sin{x})}$ which lies in $(-\pi,\pi)$. Since we have chosen the principal branch of $\log{z}$, it follows from these considerations that $\log{(-2ie^{ix}\sin{x})} = \log{(2\sin{x})} + i(x-\pi/2)$, and therefore that 

\begin{align*}\text{Re}{f(x)} &= \log^2{(2\sin{x})} - (x-\pi/2)^2 \\&= \log^2{(\sin{x})} + 2\log{2}\log{(\sin{x})} + \log^2{2} - (x - \pi/2)^2.\end{align*}

By setting $\int_0^{\pi/2} \text{Re}f(x)\,dx = 0$ we get

\begin{align*}\int_0^{\pi/2} \log^2{(\sin{x})}\,dx &= \int_0^{\pi/2}(x-\pi/2)^2\,dx - 2\log{2}\int_0^{\pi/2} \log{(\sin{x})}\,dx -\frac{\pi}{2}\log^2{2} \\& = \frac{1}{3}\left(\frac{\pi}{2}\right)^3 + \frac{\pi}{2} \log^2{2}\end{align*}

as expected

By similar methods, one can compute a variety of integrals of this form with little difficulty. Here are some examples I have computed for fun. All are proved by the same method, with the same contour, but different functions $f$.

1. Take $f(z) = \log{(1 + e^{2iz})} = \log{(2e^{iz}\cos{z})}$ and compare imaginary parts to get

$$\int_0^\infty \log{(\coth{y})}\,dy = \frac{1}{2}\left(\frac{\pi}{2}\right)^2.$$

2. Related to this question of yours (which incidentally led me here), one can show by taking $f(z) = \log^4(1 + e^{2iz})$ and comparing real parts that

$$\int_0^{\pi/2} x^2\log^2{(2\cos{x})}\,dx = \frac{1}{30}\left(\frac{\pi}{2}\right)^5 + \frac{1}{6}\int_0^{\pi/2} \log^4{(2\cos{x})}\,dx.$$Assuming the result of the other question, we then get

$$\int_0^{\pi/2} \log^4{(2\cos{x})}\,dx = \frac{19}{15}\left(\frac{\pi}{2}\right)^5.$$

3.Also related to the question cited in 2., taking $f(z) = z^2\log^2{(1 + e^{2iz})}$ and comparing real parts gives

$$\int_0^{\pi/2}x^2\log^2{(2\cos{x})}\,dx = \frac{1}{5}\left(\frac{\pi}{2}\right)^5 + \pi \int_0^\infty y\log^2{(1- e^{-2y})}\,dy.$$

Once more, assuming the result of the other question, we get

$$\int_0^\infty y\log^2{(1- e^{-2y})}\,dy = \frac{1}{45}\left(\frac{\pi}{2}\right)^4.$$

Actually, the integral in 3. has several interesting series expansions, and I would be very interested if someone could compute it without using the result from the question I cited. For one thing, that would give us a different proof of that result (which is why I started investigating it in the first place).

参阅:http://math.stackexchange.com/questions/58654/integrate-square-of-the-log-sine-integral-int-0-frac-pi2-ln2-sinx/58672#58672

再看一下推广:

\[\int_0^{\frac{\pi }{2}} {{{\ln }^n}\sin xdx}  = \frac{{\sqrt \pi  }}{{{2^{n + 1}}}}\frac{{{d^k}}}{{d{\alpha ^k}}}{\left( {\frac{{\Gamma \left( {\frac{{2\alpha  + 1}}{2}} \right)}}{{\Gamma \left( {\frac{{2\alpha  + 2}}{2}} \right)}}} \right)_{\alpha  = 0}}.\]

证明.注意到\[\int_0^{\frac{\pi }{2}} {{{\ln }^n}\sin xdx}  = \int_0^{\frac{\pi }{2}} {\frac{{{{\ln }^n}t}}{{\sqrt {1 - {t^2}} }}dt}. \]

令\[I\left( \alpha  \right) = \int_0^1 {\frac{{{t^{2\alpha }}}}{{\sqrt {1 - {t^2}} }}dt}  = \frac{1}{2}B\left( {\frac{1}{2},\frac{{2\alpha  + 1}}{2}} \right) = \frac{{\sqrt \pi  }}{2}\frac{{\Gamma \left( {\frac{{2\alpha  + 1}}{2}} \right)}}{{\Gamma \left( {\frac{{2\alpha  + 2}}{2}} \right)}},\]

则有\[{I^{\left( n \right)}}\left( \alpha  \right) = \int_0^1 {\frac{{{t^{2\alpha }}{2^n}{{\ln }^n}t}}{{\sqrt {1 - {t^2}} }}dt}  .\]

故有

\[\int_0^{\frac{\pi }{2}} {{{\ln }^n}\sin xdx}  = \int_0^{\frac{\pi }{2}} {\frac{{{{\ln }^n}t}}{{\sqrt {1 - {t^2}} }}dt}  = \frac{{{I^{\left( n \right)}}\left( 0 \right)}}{{{2^n}}} = \frac{{\sqrt \pi  }}{{{2^{n + 1}}}}\frac{{{d^k}}}{{d{\alpha ^k}}}{\left( {\frac{{\Gamma \left( {\frac{{2\alpha  + 1}}{2}} \right)}}{{\Gamma \left( {\frac{{2\alpha  + 2}}{2}} \right)}}} \right)_{\alpha  = 0}}.\]

另一种解法

Use generating series.  Consider the function $$f(z)=\sum_{k=0}^{\infty}S_{k}\frac{z^{k}}{k!}.$$ Then $$f(z)=\int_0^1 \left(\sum_{k=0}^\infty (-1)^k \log^k(\sin(\pi x)) z^k \right)dx=\int_{0}^{1}\frac{1}{\sin\left(\pi x\right)^{z}}dx=\frac{\Gamma\left(\frac{1-z}{2}\right)}{\sqrt{\pi}\Gamma\left(1-\frac{z}{2}\right)}.$$  The last equality follows from an identity of the Beta Function and then applying the Duplication Formula. From here, differentiating and plugging in $z=0$ allows you to conclude. 

参阅:http://math.stackexchange.com/questions/121473/solve-the-integral-s-k-1k-int-01-log-sin-pi-xk-dx?rq=1

关于此类问题还可参阅:

http://math.stackexchange.com/questions/307593/a-hard-log-definite-integral-int-0-pi-4-ln3-sin-x-mathrm-dx?lq=1

或是http://math.stackexchange.com/questions/289587/log-sin-and-log-cos-integral-maybe-relate-to-fourier-series/309781#309781

http://math.stackexchange.com/questions/330057/how-to-evaluate-i-displaystyle-int-0-pi-2x2-ln-sin-x-ln-cos-xdx

 

本文转自:http://eufisky.is-programmer.com/posts/54402.html

【转】欧拉积分的一个延伸

标签:

原文地址:http://www.cnblogs.com/kirbykirbykirby/p/4732616.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!