题目传送:The Unique MST
AC代码:
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <complex>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <sstream>
#include <utility>
#include <iostream>
#include <algorithm>
#include <functional>
#define LL long long
#define INF 0xfffffff
using namespace std;
int n, m;
const int maxn = 105;
int cost[maxn][maxn];
int Max[maxn][maxn];
int vis[maxn];//用来标记点是否访问过
int used[maxn][maxn];//用来标记边是否访问过
int pre[maxn];
int low[maxn];
int ans;
int prim() {
int ret = 0;
memset(vis, 0, sizeof(vis));
memset(Max, 0, sizeof(Max));
memset(used, 0, sizeof(used));
vis[1] = 1;
pre[1] = -1;
for(int i = 2; i <= n; i ++) {
low[i] = cost[1][i];
pre[i] = 1;
}
low[1] = 0;
for(int i = 2; i <= n; i ++) {
int mi = INF;
int pos = -1;
for(int j = 1; j <= n; j ++) {
if(!vis[j] && mi > low[j]) {
mi = low[j];
pos = j;
}
}
if(mi == INF) return -1;
ret += mi;
vis[pos] = 1;
used[pos][pre[pos]] = used[pre[pos]][pos] = 1;
for(int j = 1; j <= n; j ++) {
if(vis[j]) Max[j][pos] = Max[pos][j] = max(Max[j][pre[pos]], low[pos]);
if(!vis[j] && low[j] > cost[pos][j]) {
low[j] = cost[pos][j];
pre[j] = pos;
}
}
}
return ret;
}
int ci_st() {
int mi = INF;
for(int i = 1; i <= n; i ++) {
for(int j = i + 1; j <= n; j ++) {
if(cost[i][j] != INF && !used[i][j]) {
mi = min(mi, ans + cost[i][j] - Max[i][j]);
}
}
}
return mi;
}
int main() {
int T;
scanf("%d", &T);
while(T --) {
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i ++) {
for(int j = 1; j <= n; j ++) {
if(i == j) {
cost[i][j] = 0;
}
else cost[i][j] = INF;
}
}
int u, v, w;
for(int i = 0; i < m; i ++) {
scanf("%d %d %d", &u, &v, &w);
cost[u][v] = cost[v][u] = w;
}
ans = prim();
if(ans == -1) {
printf("Not Unique!\n");
continue;
}
//cout << ans << " " << ci_st() << endl;
if(ans == ci_st()) printf("Not Unique!\n");
else printf("%d\n", ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ - 1679 - The Unique MST (次小生成树)
原文地址:http://blog.csdn.net/u014355480/article/details/47683467