标签:
题解链接:http://www.cygmasot.com/index.php/2015/08/15/hdu_5381/
题意:
给定n长的序列
下面n个数给出这个序列
m个询问
下面m行给出询问的区间。
对于一个询问,输出这个区间内的任意子段的gcd 和。
思路:
因为一个数的gcd只会不变或下降,下降一次至少减半,下降至多32次,所以处理出每个数连续相同的gcd的区间。
然后暴力跑莫队。
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <vector> #include <string> #include <time.h> #include <math.h> #include <iomanip> #include <queue> #include <stack> #include <set> #include <map> const int inf = 1e9; const double eps = 1e-8; const double pi = acos(-1.0); template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x < 0) { putchar('-'); x = -x; } if (x > 9) pt(x / 10); putchar(x % 10 + '0'); } using namespace std; const int N = 1e5 + 10; typedef long long ll; typedef pair<int, int> pii; template <class T> inline T gcd(T a, T b) { if (a > b)swap(a, b); while (a)b %= a, swap(a, b);return b; } vector<int>G[N]; class MST { struct Edge { int from, to, dis; Edge(int _from = 0, int _to = 0, int _dis = 0) :from(_from), to(_to), dis(_dis) {} bool operator < (const Edge &x) const { return dis < x.dis; } }edge[N << 3]; int f[N], tot; int find(int x) { return x == f[x] ? x : f[x] = find(f[x]); } bool Union(int x, int y) { x = find(x); y = find(y); if (x == y)return false; if (x > y)swap(x, y); f[x] = y; return true; } public: void init(int n) { for (int i = 0; i <= n; i++)f[i] = i; tot = 0; } void add(int u, int v, int dis) { edge[tot++] = Edge(u, v, dis); } ll work() {//计算最小生成树,返回花费 sort(edge, edge + tot); ll cost = 0; for (int i = 0; i < tot; i++) if (Union(edge[i].from, edge[i].to)) { cost += edge[i].dis; G[edge[i].from].push_back(edge[i].to); G[edge[i].to].push_back(edge[i].from); } return cost; } }mst; struct Point {//二维平面的点 int x, y, id; bool operator < (const Point&a) const { return x == a.x ? y < a.y : x < a.x; } }p[N]; bool cmp_id(const Point&a, const Point&b) { return a.id < b.id; } class BIT {//树状数组 int c[N], id[N], maxn; int lowbit(int x) { return x&-x; } public: void init(int n) { maxn = n + 10; fill(c, c + maxn + 1, inf); fill(id, id + maxn + 1, -1); } void updata(int x, int val, int _id) { while (x) { if (val < c[x]) { c[x] = val; id[x] = _id; } x -= lowbit(x); } } int query(int x) { int val = inf, _id = -1; while (x <= maxn) { if (val > c[x]) { val = c[x]; _id = id[x]; } x += lowbit(x); } return _id; } }tree; inline bool cmp(int *x, int *y) { return *x < *y; } class Manhattan_MST { int A[N], B[N]; public: ll work(int l, int r) { for (int i = l; i <= r; i++)G[i].clear(); mst.init(r); for (int dir = 1; dir <= 4; dir++) { if (dir % 2 == 0)for (int i = l; i <= r; i++)swap(p[i].x, p[i].y); else if (dir == 3)for (int i = l; i <= r; i++)p[i].y = -p[i].y; sort(p + l, p + r + 1); for (int i = l; i <= r; i++) A[i] = B[i] = p[i].y - p[i].x; //离散化 sort(B + l, B + r + 1); int sz = unique(B + l, B + r + 1) - B; //初始化反树状数组 tree.init(sz); for (int i = r; i >= l; i--) { int pos = lower_bound(B + l, B + sz, A[i]) - B; int id = tree.query(pos); if (id != -1) mst.add(p[i].id, p[id].id, abs(p[i].x - p[id].x) + abs(p[i].y - p[id].y)); tree.updata(pos, p[i].x + p[i].y, i); } } for (int i = l; i <= r; i++)p[i].y = -p[i].y; return mst.work(); } }m_mst; int n, m, a[N]; int l[N], r[N]; vector<pii>L[N], R[N]; ll ans[N], now; int now_l, now_r; ll cal_l(int point, int lim) {//point < lim int pre = point; ll hehe = 0; for (auto v : R[point]) { hehe += (ll)v.second * (min(v.first, lim) - pre + 1); pre = v.first + 1; if (pre > lim)break; } return hehe; } ll cal_r(int point, int lim) {//lim < point int pre = point; ll hehe = 0; for (auto v : L[point]) { hehe += (ll)v.second * (pre - max(v.first, lim) + 1); pre = v.first - 1; if (pre < lim)break; } return hehe; } void add(int x, int y) { if (now_l > now_r) { now = a[x]; now_l = now_r = x; x++; if (x > y)return; } for (int i = x; i <= y; i++) { if (y < now_l) now += cal_l(i, now_r); else now += cal_r(i, now_l); } if (y < now_l)now_l = x; else now_r = y; } void del(int x, int y) { for (int i = x; i <= y; i++) { if (y < now_r) now -= cal_l(i, now_r); else now -= cal_r(i, now_l); } if (y < now_r)now_l = y + 1; else now_r = x - 1; } void dfs(int u, int fa) { if (u == fa) add(l[u], r[u]); else { if (l[u] < l[fa]) add(l[u], l[fa] - 1); if (r[u] > r[fa]) add(r[fa] + 1, r[u]); if (l[u] > l[fa]) del(l[fa], l[u] - 1); if (r[u] < r[fa]) del(r[u] + 1, r[fa]); } ans[u] = now; for (int v : G[u]) if (v != fa)dfs(v, u); if (fa != u) { if (l[u] > l[fa]) add(l[fa], l[u] - 1); if (r[u] < r[fa]) add(r[u] + 1, r[fa]); if (l[u] < l[fa]) del(l[u], l[fa] - 1); if (r[u] > r[fa]) del(r[fa] + 1, r[u]); } } void deal_vector(vector<pii>&x) { for (int i = 1; i < x.size(); i++) if (x[i].first == x[i - 1].first)x[i] = x[i - 1]; x.erase(unique(x.begin(), x.end()), x.end()); } void get_left_gcd() { vector<pii>tmp; for (int i = 1; i <= n; i++) { int gc = a[i]; for (int j = tmp.size() - 1; j >= 0; j--) gc = tmp[j].first = gcd(tmp[j].first, gc); tmp.push_back({ a[i], i }); deal_vector(tmp); L[i] = tmp; reverse(L[i].begin(), L[i].end()); for (int j = 0; j < L[i].size(); j++)swap(L[i][j].first, L[i][j].second); } } void get_right_gcd() { vector<pii>tmp; for (int i = n; i; i--) { int gc = a[i]; for (int j = tmp.size() - 1; j >= 0; j--) gc = tmp[j].first = gcd(tmp[j].first, gc); tmp.push_back({ a[i], i }); deal_vector(tmp); R[i] = tmp; reverse(R[i].begin(), R[i].end()); for (int j = 0; j < R[i].size(); j++)swap(R[i][j].first, R[i][j].second); } } int main() { int T; rd(T); while (T--) { rd(n); for (int i = 1; i <= n; i++)rd(a[i]); get_left_gcd(); get_right_gcd(); rd(m); for (int i = 1; i <= m; i++) { rd(p[i].x); rd(p[i].y); p[i].id = i; l[i] = p[i].x; r[i] = p[i].y; } m_mst.work(1, m); now_l = 1; now_r = 0; dfs(1, 1); for (int i = 1; i <= m; i++)pt(ans[i]), puts(""); } return 0; } /* 1 9 74 93 61 58 17 35 26 65 83 4 6 6 8 9 2 8 2 7 1 6 476 961 584 469 858 930 9 5 6 4 5 4 4 2 2 1 6 4 4 2 6 4 4 4 4 1 8 855 814 483 780 214 518 462 693 8 8 8 7 8 7 7 6 6 1 1 2 3 6 8 8 8 */
2 5 1 2 3 4 5 3 1 3 2 3 1 4 4 4 2 6 9 3 1 3 2 4 2 3
9 6 16 18 23 10
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/qq574857122/article/details/47683053