码迷,mamicode.com
首页 > 其他好文 > 详细

8皇后问题

时间:2015-08-16 00:34:25      阅读:141      评论:0      收藏:0      [点我收藏+]

标签:

n皇后问题:n*n棋盘:使其不能相互攻击:即任意两个皇后不可在同一行,同一列,或同一条对角线上;

使用回溯法;

回溯法思想:一个解空间(X0,X2...Xn-1),显式约束条件,隐式约束条件Xi之间的关系;

void rcallback(int k){

      for( 满足下式的每个X(k):

    满足显式约束条件即 X属于T(x1,X2,X3...Xk-1) 并且满足隐式约束条件:B(X1,X2...XK)=true)

           if( (X0,X2...Xn-1)是一条已抵达答案结点的路径) 打印;

           rcallback(k+1);

  }

}

 

 

package com.algothrim;

/*

* 不失一般性:设第i行放置了第i个皇后;解空间X={X0,X1,X2...Xn-1};其中Xi表示第i个皇后放在第Xi列上。
* 两个皇后(i,Xi),(j,Xj) :在同一列情况仅当: Xi=Xj; 在同一对角线情况仅当:|Xj-Xi|=|j-i|;
*
* 初始化第0个皇后在-1列; 行标line=0;
* 使第line个皇后移到下一列,判断是否可放:若不可以,则继续移到下一列;
*
* 若第line个皇后移到了第n列,即表示无解,line=line-1回溯。
* 否则:判断line=n-1即最后一个皇后,那么打印输出这条路径。
* 若不是最后一个皇后,line=line+1;移到下一行,放置下一个皇后。
*/

public class NQueens{
  public boolean place(int[] X,int k){
    for(int i=0;i<k;i++){
      if(X[i]==X[k] || abs(X[i],X[k])==abs(k,i))
        return false;
    }
    return true;
  }
  public int abs(int a,int b){
    return a>b ? a-b : b-a;
  }
  public void nQueens(int n){
    int[] X=new int[n];
    int line=0;
    X[0]=-1;
    while(line>-1){
      X[line]=X[line]+1; ///移到下一列
      while(X[line]<n && !place(X,line)) //此处能放置这个皇后吗?
          X[line]=X[line]+1;
      if(X[line]<n){
      if(line==n-1) print(X);
      else{
        line=line+1; //转向下一行
        X[line]=0;
      }
    }else{
      line=line-1; //回溯
    }
  }
}
  public void print(int[] X){
    System.out.println("一种解方案:");
    for(int i=0;i<X.length;i++)
      System.out.print(" "+X[i]);
    System.out.println();
  }
public static void main(String[] args) {
  NQueens nQueens=new NQueens();
  nQueens.nQueens(8);
}

}

8皇后问题

标签:

原文地址:http://www.cnblogs.com/dan-cnblogs/p/4733421.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!