标签:
题目大意:给出一张混合图,要求你改变尽量多的双向边,使得改变后的图还是强连通的
解题思路:这题和poj-1515类似,只不过这题是混合题,大体思路还是差不多的,在dfs的时候记录一下桥和使用的是哪些边即可
#include <cstdio>
#include <cstring>
#define min(a,b)((a) < (b) ? (a) : (b))
#define N 2010
#define M 4000010
struct Edge{
int from, to, dir, next, flag;
}E[M];
int head[N], pre[N], lowlink[N];
int tot, dfs_clock, n, m;
void dfs(int u, int fa) {
pre[u] = lowlink[u] = ++dfs_clock;
for (int i = head[u]; i != -1; i = E[i].next) {
int v = E[i].to;
if (E[i].flag != -1) continue;
if (E[i].dir == 0) continue;
E[i].flag = 1;
E[i^1].flag = 0;
if (!pre[v]) {
dfs(v, u);
lowlink[u] = min(lowlink[u], lowlink[v]);
if (lowlink[v] > pre[u]) {
E[i ^ 1].flag = 1;
}
}
else if (v != fa) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
}
void solve() {
memset(pre, 0, sizeof(pre));
dfs_clock = 0;
for (int i = 1; i <= n; i++)
if (!pre[i])
dfs(i, -1);
for (int i = 0; i < tot; i += 2) {
if (E[i].dir == 2 && E[i].flag == 1 && E[i^1].flag == 1) {
printf("%d %d 2\n", E[i].from, E[i].to);
}
else if (E[i].dir == 2 && E[i].flag == 1 && E[i^1].flag == 0) {
printf("%d %d 1\n", E[i].from, E[i].to);
}
else if (E[i].dir == 2 && E[i].flag == 0 && E[i ^ 1].flag == 1) {
printf("%d %d 1\n", E[i^1].from, E[i^1].to);
}
}
}
void AddEdge(int u, int v, int dir) {
E[tot].from = u;
E[tot].to = v;
E[tot].dir = dir;
E[tot].flag = -1;
E[tot].next = head[u];
head[u] = tot++;
}
void init() {
memset(head, -1, sizeof(head));
tot = 0;
int a, b, c;
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &a, &b, &c);
if (c == 2) {
AddEdge(a, b, c);
AddEdge(b, a, c);
}
else {
AddEdge(a, b, c);
AddEdge(a, b, 0);
}
}
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
init();
solve();
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
POJ - 1438 One-way Traffic(混合图改有向图)
标签:
原文地址:http://blog.csdn.net/l123012013048/article/details/47690429