码迷,mamicode.com
首页 > 其他好文 > 详细

聚类分析初探

时间:2015-08-16 13:32:56      阅读:200      评论:0      收藏:0      [点我收藏+]

标签:

聚类分析初探

第一章  引言

第二章  预备知识

第三章  直接聚类法

第四章  K-means

第五章  DBSCAN

第六章  OPTICS

第七章 聚类分析的效果评测

第八章 数据尺度化问题

发表在 Science 上的一种新聚类算法

 

技术分享

 

 

技术分享

技术分享技术分享

技术分享技术分享技术分享技术分享

技术分享技术分享技术分享技术分享

技术分享技术分享技术分享技术分享技术分享

技术分享技术分享技术分享技术分享技术分享技术分享技术分享

技术分享技术分享技术分享

技术分享

      本文摘自中国科学院计算技术研究所周昭涛的硕士论文《文本聚类分析效果评价及文本表示研究》的第三章,算是一则读书笔记吧,希望对大家有点帮助。

技术分享技术分享技术分享技术分享技术分享技术分享

 

文中提到的准确率和召回率的定义可参见 

http://blog.csdn.net/itplus/article/details/10862059

技术分享技术分享技术分享技术分享技术分享

 

文中尺度化的一些具体公式可参见 http://blog.csdn.net/itplus/article/details/10088101

      
    今年 6 月份,Alex Rodriguez 和 Alessandro Laio 在 Science 上发表了一篇名为《Clustering by fast search and find of density peaks》的文章,为聚类算法的设计提供了一种新的思路。虽然文章出来后遭到了众多读者的质疑,但整体而言,新聚类算法的基本思想很新颖,且简单明快,值得学习。这个新聚类算法的核心思想在于对聚类中心的刻画上,本文将对该算法的原理进行详细介绍,并对其中的若干细节展开讨论。

 

 

 

 

技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享技术分享

最后,附上作者在补充材料里提供的 Matlab 示例程序 (加了适当的代码注释)。

clear all  
close all  
disp(‘The only input needed is a distance matrix file‘)  
disp(‘The format of this file should be: ‘)  
disp(‘Column 1: id of element i‘)  
disp(‘Column 2: id of element j‘)  
disp(‘Column 3: dist(i,j)‘)  
  
%% 从文件中读取数据  
mdist=input(‘name of the distance matrix file (with single quotes)?\n‘);  
disp(‘Reading input distance matrix‘)  
xx=load(mdist);  
ND=max(xx(:,2));  
NL=max(xx(:,1));  
if (NL>ND)  
  ND=NL;  %% 确保 DN 取为第一二列最大值中的较大者,并将其作为数据点总数  
end  
  
N=size(xx,1); %% xx 第一个维度的长度,相当于文件的行数(即距离的总个数)  
  
%% 初始化为零  
for i=1:ND  
  for j=1:ND  
    dist(i,j)=0;  
  end  
end  
  
%% 利用 xx 为 dist 数组赋值,注意输入只存了 0.5*DN(DN-1) 个值,这里将其补成了满矩阵  
%% 这里不考虑对角线元素  
for i=1:N  
  ii=xx(i,1);  
  jj=xx(i,2);  
  dist(ii,jj)=xx(i,3);  
  dist(jj,ii)=xx(i,3);  
end  
  
%% 确定 dc  
  
percent=2.0;  
fprintf(‘average percentage of neighbours (hard coded): %5.6f\n‘, percent);  
  
position=round(N*percent/100); %% round 是一个四舍五入函数  
sda=sort(xx(:,3)); %% 对所有距离值作升序排列  
dc=sda(position);  
  
%% 计算局部密度 rho (利用 Gaussian 核)  
  
fprintf(‘Computing Rho with gaussian kernel of radius: %12.6f\n‘, dc);  
  
%% 将每个数据点的 rho 值初始化为零  
for i=1:ND  
  rho(i)=0.;  
end  
  
% Gaussian kernel  
for i=1:ND-1  
  for j=i+1:ND  
     rho(i)=rho(i)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));  
     rho(j)=rho(j)+exp(-(dist(i,j)/dc)*(dist(i,j)/dc));  
  end  
end  
  
% "Cut off" kernel  
%for i=1:ND-1  
%  for j=i+1:ND  
%    if (dist(i,j)<dc)  
%       rho(i)=rho(i)+1.;  
%       rho(j)=rho(j)+1.;  
%    end  
%  end  
%end  
  
%% 先求矩阵列最大值,再求最大值,最后得到所有距离值中的最大值  
maxd=max(max(dist));   
  
%% 将 rho 按降序排列,ordrho 保持序  
[rho_sorted,ordrho]=sort(rho,‘descend‘);  
   
%% 处理 rho 值最大的数据点  
delta(ordrho(1))=-1.;  
nneigh(ordrho(1))=0;  
  
%% 生成 delta 和 nneigh 数组  
for ii=2:ND  
   delta(ordrho(ii))=maxd;  
   for jj=1:ii-1  
     if(dist(ordrho(ii),ordrho(jj))<delta(ordrho(ii)))  
        delta(ordrho(ii))=dist(ordrho(ii),ordrho(jj));  
        nneigh(ordrho(ii))=ordrho(jj);   
        %% 记录 rho 值更大的数据点中与 ordrho(ii) 距离最近的点的编号 ordrho(jj)  
     end  
   end  
end  
  
%% 生成 rho 值最大数据点的 delta 值  
delta(ordrho(1))=max(delta(:));  
  
%% 决策图  
  
disp(‘Generated file:DECISION GRAPH‘)   
disp(‘column 1:Density‘)  
disp(‘column 2:Delta‘)  
  
fid = fopen(‘DECISION_GRAPH‘, ‘w‘);  
for i=1:ND  
   fprintf(fid, ‘%6.2f %6.2f\n‘, rho(i),delta(i));  
end  
  
%% 选择一个围住类中心的矩形  
disp(‘Select a rectangle enclosing cluster centers‘)  
  
%% 每台计算机,句柄的根对象只有一个,就是屏幕,它的句柄总是 0  
%% >> scrsz = get(0,‘ScreenSize‘)  
%% scrsz =  
%%            1           1        1280         800  
%% 1280 和 800 就是你设置的计算机的分辨率,scrsz(4) 就是 800,scrsz(3) 就是 1280  
scrsz = get(0,‘ScreenSize‘);  
  
%% 人为指定一个位置,感觉就没有那么 auto 了 :-)  
figure(‘Position‘,[6 72 scrsz(3)/4. scrsz(4)/1.3]);  
  
%% ind 和 gamma 在后面并没有用到  
for i=1:ND  
  ind(i)=i;   
  gamma(i)=rho(i)*delta(i);  
end  
  
%% 利用 rho 和 delta 画出一个所谓的“决策图”  
  
subplot(2,1,1)  
tt=plot(rho(:),delta(:),‘o‘,‘MarkerSize‘,5,‘MarkerFaceColor‘,‘k‘,‘MarkerEdgeColor‘,‘k‘);  
title (‘Decision Graph‘,‘FontSize‘,15.0)  
xlabel (‘\rho‘)  
ylabel (‘\delta‘)  
  
subplot(2,1,1)  
rect = getrect(1);   
%% getrect 从图中用鼠标截取一个矩形区域, rect 中存放的是  
%% 矩形左下角的坐标 (x,y) 以及所截矩形的宽度和高度  
rhomin=rect(1);  
deltamin=rect(2); %% 作者承认这是个 error,已由 4 改为 2 了!  
  
%% 初始化 cluster 个数  
NCLUST=0;  
  
%% cl 为归属标志数组,cl(i)=j 表示第 i 号数据点归属于第 j 个 cluster  
%% 先统一将 cl 初始化为 -1  
for i=1:ND  
  cl(i)=-1;  
end  
  
%% 在矩形区域内统计数据点(即聚类中心)的个数  
for i=1:ND  
  if ( (rho(i)>rhomin) && (delta(i)>deltamin))  
     NCLUST=NCLUST+1;  
     cl(i)=NCLUST; %% 第 i 号数据点属于第 NCLUST 个 cluster  
     icl(NCLUST)=i;%% 逆映射,第 NCLUST 个 cluster 的中心为第 i 号数据点  
  end  
end  
  
fprintf(‘NUMBER OF CLUSTERS: %i \n‘, NCLUST);  
  
disp(‘Performing assignation‘)  
  
%% 将其他数据点归类 (assignation)  
for i=1:ND  
  if (cl(ordrho(i))==-1)  
    cl(ordrho(i))=cl(nneigh(ordrho(i)));  
  end  
end  
%% 由于是按照 rho 值从大到小的顺序遍历,循环结束后, cl 应该都变成正的值了.   
  
%% 处理光晕点,halo这段代码应该移到 if (NCLUST>1) 内去比较好吧  
for i=1:ND  
  halo(i)=cl(i);  
end  
  
if (NCLUST>1)  
  
  % 初始化数组 bord_rho 为 0,每个 cluster 定义一个 bord_rho 值  
  for i=1:NCLUST  
    bord_rho(i)=0.;  
  end  
  
  % 获取每一个 cluster 中平均密度的一个界 bord_rho  
  for i=1:ND-1  
    for j=i+1:ND  
      %% 距离足够小但不属于同一个 cluster 的 i 和 j  
      if ((cl(i)~=cl(j))&& (dist(i,j)<=dc))  
        rho_aver=(rho(i)+rho(j))/2.; %% 取 i,j 两点的平均局部密度  
        if (rho_aver>bord_rho(cl(i)))   
          bord_rho(cl(i))=rho_aver;  
        end  
        if (rho_aver>bord_rho(cl(j)))   
          bord_rho(cl(j))=rho_aver;  
        end  
      end  
    end  
  end  
  
  %% halo 值为 0 表示为 outlier  
  for i=1:ND  
    if (rho(i)<bord_rho(cl(i)))  
      halo(i)=0;  
    end  
  end  
  
end  
  
%% 逐一处理每个 cluster  
for i=1:NCLUST  
  nc=0; %% 用于累计当前 cluster 中数据点的个数  
  nh=0; %% 用于累计当前 cluster 中核心数据点的个数  
  for j=1:ND  
    if (cl(j)==i)   
      nc=nc+1;  
    end  
    if (halo(j)==i)   
      nh=nh+1;  
    end  
  end  
  
  fprintf(‘CLUSTER: %i CENTER: %i ELEMENTS: %i CORE: %i HALO: %i \n‘, i,icl(i),nc,nh,nc-nh);  
  
end  
  
cmap=colormap;  
for i=1:NCLUST  
   ic=int8((i*64.)/(NCLUST*1.));  
   subplot(2,1,1)  
   hold on  
   plot(rho(icl(i)),delta(icl(i)),‘o‘,‘MarkerSize‘,8,‘MarkerFaceColor‘,cmap(ic,:),‘MarkerEdgeColor‘,cmap(ic,:));  
end  
subplot(2,1,2)  
disp(‘Performing 2D nonclassical multidimensional scaling‘)  
Y1 = mdscale(dist, 2, ‘criterion‘,‘metricstress‘);  
plot(Y1(:,1),Y1(:,2),‘o‘,‘MarkerSize‘,2,‘MarkerFaceColor‘,‘k‘,‘MarkerEdgeColor‘,‘k‘);  
title (‘2D Nonclassical multidimensional scaling‘,‘FontSize‘,15.0)  
xlabel (‘X‘)  
ylabel (‘Y‘)  
for i=1:ND  
 A(i,1)=0.;  
 A(i,2)=0.;  
end  
for i=1:NCLUST  
  nn=0;  
  ic=int8((i*64.)/(NCLUST*1.));  
  for j=1:ND  
    if (halo(j)==i)  
      nn=nn+1;  
      A(nn,1)=Y1(j,1);  
      A(nn,2)=Y1(j,2);  
    end  
  end  
  hold on  
  plot(A(1:nn,1),A(1:nn,2),‘o‘,‘MarkerSize‘,2,‘MarkerFaceColor‘,cmap(ic,:),‘MarkerEdgeColor‘,cmap(ic,:));  
end  
  
%for i=1:ND  
%   if (halo(i)>0)  
%      ic=int8((halo(i)*64.)/(NCLUST*1.));  
%      hold on  
%      plot(Y1(i,1),Y1(i,2),‘o‘,‘MarkerSize‘,2,‘MarkerFaceColor‘,cmap(ic,:),‘MarkerEdgeColor‘,cmap(ic,:));  
%   end  
%end  
faa = fopen(‘CLUSTER_ASSIGNATION‘, ‘w‘);  
disp(‘Generated file:CLUSTER_ASSIGNATION‘)  
disp(‘column 1:element id‘)  
disp(‘column 2:cluster assignation without halo control‘)  
disp(‘column 3:cluster assignation with halo control‘)  
for i=1:ND  
   fprintf(faa, ‘%i %i %i\n‘,i,cl(i),halo(i));  
end  

  

技术分享

 

 

作者: peghoty 

出处: http://blog.csdn.net/itplus/article/details/10087581 

欢迎转载/分享, 但请务必声明文章出处.

 

聚类分析初探

标签:

原文地址:http://www.cnblogs.com/yymn/p/4733978.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!