链接:http://acm.hdu.edu.cn/showproblem.php?pid=2892
小白只知道自己在(x,y,h)的空间坐标处以(x1,y1,0)的速度水平飞行时投下的炸弹,请你计算出小白所摧毁的岛屿的面积有多大. 重力加速度G = 10.
最后输入n行,每行输入一个(x‘,y‘)坐标,代表岛屿的顶点(按顺势针或者逆时针给出)。(3<= n < 100000)
输出一个两位小数,表示实际轰炸到的岛屿的面积。
1900 -100
Source
2009 Multi-University Training Contest 10 - Host by NIT
Recommend
gaojie
大意——给你一个起点空间坐标,再给你一个平面坐标,空间坐标表示此刻导弹的位置,平面坐标表示导弹移动的方向。导弹做的是平抛运动。现在再给你导弹的轰炸半径以及一个多边形小岛的顶点坐标。问:导弹能轰炸岛屿的多大面积?
思路——实际上就是求圆与多边形相交的面积。如果是凸多边形,可以将多边形化作以圆心为顶点的三角形;但如果是凹多边形,那么会因为求出多余面积而难以处理。但是用叉积算可以避免这个问题。因此找到一个模板套用就行了。
复杂度分析——时间复杂度:O(n),空间复杂度:O(n)
附上AC代码:
// 程序中的模板是我修改的,除了主函数,其他函数都属于模板部分
#include <iostream> #include <cstdio> #include <string> #include <cmath> #include <iomanip> #include <ctime> #include <climits> #include <cstdlib> #include <cstring> #include <algorithm> #include <queue> #include <vector> #include <set> #include <map> using namespace std; typedef unsigned int UI; typedef long long LL; typedef unsigned long long ULL; typedef long double LD; const double pi = acos(-1.0); const double e = exp(1.0); const double eps = 1e-8; const int maxn = 100005; double x, y, h; double vx, vy; double R; int n; struct point { double x, y; point(double _x=0.0, double _y=0.0) : x(_x), y(_y) {} point operator - (const point & p) { return point(x-p.x, y-p.y); } double sqrx() { return sqrt(x*x+y*y); } } area[maxn]; double xmult(point & p1, point & p2, point & p0); double distancex(point & p1, point & p2); point intersection(point u1, point u2, point v1, point v2); void intersection_line_circle(point c, double r, point l1, point l2, point & p1, point & p2); point ptoseg(point p, point l1, point l2); double distp(point & a, point & b); double Direct_Triangle_Circle_Area(point a, point b, point o, double r); int main() { ios::sync_with_stdio(false); while (scanf("%lf%lf%lf", &x, &y, &h) != EOF) { scanf("%lf%lf", &vx, &vy); scanf("%lf", &R); scanf("%d", &n); x += vx*sqrt(h/5.0); y += vy*sqrt(h/5.0); point temp = point(x, y); double sum = 0; for (int i=0; i<n; i++) scanf("%lf%lf", &area[i].x, &area[i].y); for (int i=0; i<n-1; i++) sum += Direct_Triangle_Circle_Area(area[i], area[i+1], temp, R); sum += Direct_Triangle_Circle_Area(area[n-1], area[0], temp, R); printf("%.2f\n", fabs(sum)); } return 0; } double xmult(point & p1, point & p2, point & p0) { return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x); } double distancex(point & p1, point & p2) { return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)); } point intersection(point u1, point u2, point v1, point v2) { point ret = u1; double t = ((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x)) / ((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x)); ret.x += (u2.x-u1.x)*t; ret.y += (u2.y-u1.y)*t; return ret; } void intersection_line_circle(point c, double r, point l1, point l2, point & p1, point & p2) { point p = c; double t; p.x += l1.y-l2.y; p.y += l2.x-l1.x; p = intersection(p, c, l1, l2); t = sqrt(r*r-distancex(p, c)*distancex(p, c))/distancex(l1, l2); p1.x = p.x+(l2.x-l1.x)*t; p1.y = p.y+(l2.y-l1.y)*t; p2.x = p.x-(l2.x-l1.x)*t; p2.y = p.y-(l2.y-l1.y)*t; } point ptoseg(point p, point l1, point l2) { point t = p; t.x += l1.y-l2.y; t.y += l2.x-l1.x; if (xmult(l1, t, p)*xmult(l2, t, p)>eps) return distancex(p, l1)<distancex(p, l2) ? l1 : l2; return intersection(p, t, l1, l2); } double distp(point & a, point & b) { return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y); } double Direct_Triangle_Circle_Area(point a, point b, point o, double r) { double sign = 1.0; a = a-o; b = b-o; o = point(0.0, 0.0); if (fabs(xmult(a, b, o)) < eps) return 0.0; if (distp(a, o) > distp(b, o)) { swap(a, b); sign = -1.0; } if (distp(a, o) < r*r+eps) { if (distp(b, o) < r*r+eps) return xmult(a, b, o)/2.0*sign; point p1, p2; intersection_line_circle(o, r, a, b, p1, p2); if (distancex(p1, b) > distancex(p2, b)) swap(p1, p2); double ret1 = fabs(xmult(a, p1, o)); double ret2 = acos((p1.x*b.x+p1.y*b.y)/p1.sqrx()/b.sqrx())*r*r; double ret = (ret1+ret2)/2.0; if (xmult(a, b, o)<eps && sign>0.0 || xmult(a, b, o)>eps && sign<0.0) ret = -ret; return ret; } point ins = ptoseg(o, a, b); if (distp(o, ins)>r*r-eps) { double ret = acos((a.x*b.x+a.y*b.y)/a.sqrx()/b.sqrx())*r*r/2.0; if (xmult(a, b, o)<eps && sign>0.0 || xmult(a, b, o)>eps && sign<0.0) ret = -ret; return ret; } point p1, p2; intersection_line_circle(o, r, a, b, p1, p2); double cm = r/(distancex(o, a)-r); point m = point((o.x+cm*a.x)/(1+cm), (o.y+cm*a.y)/(1+cm)); double cn = r/(distancex(o, b)-r); point n = point((o.x+cn*b.x)/(1+cn), (o.y+cn*b.y)/(1+cn)); double ret1 = acos((m.x*n.x+m.y*n.y)/m.sqrx()/n.sqrx())*r*r; double ret2 = acos((p1.x*p2.x+p1.y*p2.y)/p1.sqrx()/p2.sqrx())*r*r-fabs(xmult(p1, p2, o)); double ret = (ret1-ret2)/2.0; if (xmult(a, b, o)<eps && sign>0.0 || xmult(a, b, o)>eps && sign<0.0) ret = -ret; return ret; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
原文地址:http://blog.csdn.net/silenceneo/article/details/47701313