码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 2256 Problem of Precision(矩阵快速幂)+ HDU 4565

时间:2015-08-16 21:27:24      阅读:149      评论:0      收藏:0      [点我收藏+]

标签:矩阵快速幂   公式推导   数学   

HDU 2256

题意:

计算?(2+3)2n?mod1024

思路:

f(n)=(2+3)2n=(5+26)n=An+Bn?6

f(n?1)=An?1+Bn?1?6

f(n)=(5+26)?f(n?1)

f(n)=(5?An?1+12?Bn?1)+(2?An?1+5?Bn?1)?6
所以递推矩阵就是:

(52125)?(An?1Bn?1)=(AnBn)

A1=5,B1=2.

然后套矩阵快速幂模板即可求出An,Bn.

(5+26)n=An+Bn?6

(5?26)n=An?Bn?6

(5+26)n+(5?26)n=2An

(5?26)n<1

?(5+26)n?=2An?1

所以最后答案就是2An?1

代码:

/*
* @author FreeWifi_novicer
* language : C++/C
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>

using namespace std;

#define clr( x , y ) memset(x,y,sizeof(x))
#define cls( x ) memset(x,0,sizeof(x))
#define mp make_pair
#define pb push_back
typedef long long lint;
typedef long long ll;
typedef long long LL;

const int mod = 1024;
const int maxn = 4;
struct Matrix{
    int n,m;
    lint a[maxn][maxn];
    Matrix(int n , int m){
        this->n = n;
        this->m = m;
        cls(a);
    }
    Matrix operator * (const Matrix &tmp){
        Matrix res(n,tmp.m);
        for(int i = 0 ; i < n ; i++){
            for(int j = 0 ; j < tmp.m ; j++){
                for(int k = 0 ; k < m ; k++){
                    res.a[i][j] = (res.a[i][j] + (a[i][k] * tmp.a[k][j]) % mod) % mod;
                }
            }
        }
        return res;
    }
};

void Matrix_print(Matrix x){
    for(int i = 0 ; i < x.n ; i++){
        for(int j = 0 ; j < x.m ; j++) cout << x.a[i][j] << ‘ ‘;
        cout << endl;
    }
}
Matrix fast_pow(Matrix x ,int n){
    Matrix res(x.n,x.m);
    for(int i = 0 ; i <  x.n ; i++) res.a[i][i] = 1;
    while(n){
        if(n&1)
            res = res * x;
        x = x*x;
        n >>= 1;
        //Matrix_print(res);
        //cout << endl;
    }
    return res;
}

void solve(){
    lint n;
    cin >> n;
    if(n == 1){
        cout << 9 << endl;
        return;
    }
    Matrix base(2,1);
    Matrix fun(2,2);
    base.a[0][0] = 5;
    base.a[1][0] = 2;
    fun.a[0][0] = 5;
    fun.a[0][1] = 12;
    fun.a[1][0] = 2;
    fun.a[1][1] = 5;
    fun = fast_pow(fun,n-1);
    base = fun * base;
    cout << (2*base.a[0][0] - 1) % mod << endl;
}

int main(){
    int t ; cin >> t;
    while(t--){
        solve();
    }
    return 0;
}

附送HDU 4565代码:

/*
* @author FreeWifi_novicer
* language : C++/C
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>

using namespace std;

#define clr( x , y ) memset(x,y,sizeof(x))
#define cls( x ) memset(x,0,sizeof(x))
#define mp make_pair
#define pb push_back
typedef long long lint;
typedef long long ll;
typedef long long LL;
lint mod;
lint n , a , b ;
const int maxn = 4;
struct Matrix{
    int n,m;
    lint a[maxn][maxn];
    Matrix(int n , int m){
        this->n = n;
        this->m = m;
        cls(a);
    }
    Matrix operator * (const Matrix &tmp){
        Matrix res(n,tmp.m);
        for(int i = 0 ; i < n ; i++){
            for(int j = 0 ; j < tmp.m ; j++){
                for(int k = 0 ; k < m ; k++){
                    res.a[i][j] = (res.a[i][j] + (a[i][k] * tmp.a[k][j]) % mod) % mod;
                }
            }
        }
        return res;
    }
};

void Matrix_print(Matrix x){
    for(int i = 0 ; i < x.n ; i++){
        for(int j = 0 ; j < x.m ; j++) cout << x.a[i][j] << ‘ ‘;
        cout << endl;
    }
}
Matrix fast_pow(Matrix x ,int n){
    Matrix res(x.n,x.m);
    for(int i = 0 ; i <  x.n ; i++) res.a[i][i] = 1;
    while(n){
        if(n&1)
            res = res * x;
        x = x*x;
        n >>= 1;
        //Matrix_print(res);
        //cout << endl;
    }
    return res;
}

void solve(){
    if(n == 1){
        lint ans = (lint)( a + ceil( sqrt( b * 1.0 ) ) ) % mod;
        cout << ans << endl;
        return;
    }
    Matrix base(2,1);
    Matrix fun(2,2);
    base.a[0][0] = a % mod;
    base.a[1][0] = 1;
    fun.a[0][0] = a % mod;
    fun.a[0][1] = b % mod;
    fun.a[1][0] = 1;
    fun.a[1][1] = a % mod;
    fun = fast_pow(fun,n-1);
    base = fun * base;
    cout << (2 * base.a[0][0]) % mod << endl;
}

int main(){
    while(cin >> a >> b >> n >> mod ){
        solve();
    }
    return 0;
}

版权声明:博主表示授权一切转载:)

HDU 2256 Problem of Precision(矩阵快速幂)+ HDU 4565

标签:矩阵快速幂   公式推导   数学   

原文地址:http://blog.csdn.net/qq_15714857/article/details/47705581

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!