标签:
题意:二维空间中给n个点,求一条直线(直线只可平行于x轴或y轴或两条对角线),使得最多的点到该直线距离不超过D,返回最大数量值。n不超过50
解法:设直线为ax+by+c=0,将每个点和两两点的中点分别作为关键点,枚举每个关键点,再枚举四条过关键点的直线,求出到该直线距离不超过D的点数量。维护数量最大值即可。复杂是
Code
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<sstream>
#include<cstdio>
#include<string>
#include<iostream>
#include<vector>
#include<set>
#include<map>
using namespace std;
typedef long long ll;
double a[] = {0,1,1,1};
double b[] = {1,0,1,-1};
double sq(double x){return x * x;}
class PowerSupply{
public:
int maxProfit(vector <int> x, vector <int> y, int D){
double d = D;
int ans = 0;
for(int i = 0; i < x.size(); i++)
{
for(int j = 0; j < 4; j++)
{
double c = -(a[j] * x[i] + b[j] * y[i]);
int ans2 = 0;
for(int k = 0; k < x.size(); k++)
{
if(sq(a[j]*x[k] + b[j]*y[k] + c) <= sq(d) * (sq(a[j]) + sq(b[j]))) ans2++;
}
ans = max(ans, ans2);
}
}
for(int i = 0; i < x.size(); i++)
{
for(int j = i + 1; j < x.size(); j++)
{
double x1 = (x[i] + x[j]) * 0.5, y1 = (y[i] + y[j]) * 0.5;
for(int k = 0; k < 4; k++)
{
double c = -(a[k] * x1 + b[k] * y1);
int ans2 = 0;
for(int l = 0; l < x.size(); l++)
{
if(sq(a[k]*x[l] + b[k]*y[l] + c) <= sq(d) * (sq(a[k]) + sq(b[k]))) ans2++;
}
ans = max(ans, ans2);
}
}
}
return ans;
}
}tt;
版权声明:本文为博主原创文章,未经博主允许不得转载。
标签:
原文地址:http://blog.csdn.net/uestc_peterpan/article/details/47707683