标签:zoj 3690 choosing n dp 矩阵快速幂
There are n people standing in a row. And There are m numbers, 1.2...m. Every one should choose a number. But if two persons standing adjacent to each other choose the same number, the number shouldn‘t equal or less than k. Apart from this rule, there are no more limiting conditions.
And you need to calculate how many ways they can choose the numbers obeying the rule.
There are multiple test cases. Each case contain a line, containing three integer n (2 ≤ n ≤ 108), m (2 ≤ m ≤ 30000), k(0 ≤ k ≤ m).
One line for each case. The number of ways module 1000000007.
4 4 1
216
题意:有n个人,1到m个数,这n个人,每人选一个数字,要求相邻的两个人选择的数要么不相等,要么相等时大于k
题解:dp[i][0]:第i个人选大于k的数的最优解,dp[i][1]:第i个人选小于等于k的数的最优解。
则 dp[i][0]=(m-k)*dp[i-1][0]+(m-k)*dp[i-1][1]
dp[i][1]=k*dp[i-1][0]+(k-1)*dp[i-1][1].
构造矩阵: | dp[i][0] | | m-k ,m-k | | dp[i-1][0] |
= *
| dp[i][1] | | k ,k-1 | | dp[i-1][1] |
#include<cstring> #include<cstdio> #include<algorithm> #include<iostream> #include<vector> #define ll long long #define mod 1000000007 using namespace std; typedef vector<ll>vec; typedef vector<vec>mat; ll n,m,k; mat mul(mat &A,mat &B) { mat C(A.size(),vec(B[0].size())); for(int i=0; i<A.size(); i++) { for(int k=0; k<B.size(); k++) { for(int j=0; j<B[0].size(); j++) { C[i][j]=(C[i][j]+A[i][k]*B[k][j])%mod; } } } return C; } mat pow_mod(mat A,ll x) { mat B(A.size(),vec(A.size())); for(int i=0; i<A.size(); i++) { B[i][i]=1; } while(x>0) { if(x&1)B=mul(B,A); A=mul(A,A); x>>=1; } return B; } int main() { //freopen("test.in","r",stdin); while(~scanf("%lld%lld%lld",&n,&m,&k)) { mat A(2,vec(2)); A[0][0]=m-k,A[0][1]=m-k; A[1][0]=k,A[1][1]=k-1; A=pow_mod(A,n-1); ll ans=(A[0][0]+A[1][0])*(m-k)%mod+(A[0][1]+A[1][1])*k%mod; printf("%lld\n",ans%mod); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。
ZOJ 3690 Choosing number(dp矩阵优化)
标签:zoj 3690 choosing n dp 矩阵快速幂
原文地址:http://blog.csdn.net/acm_baihuzi/article/details/47714431